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Flow on fracture surfaces has been identified by many authors as an im-

portant flow process in unsaturated fractured rock formations. Given the

complexity of flow dynamics on such small scales, robust numerical meth-

ods have to be employed in order to capture the highly dynamic interfaces

and flow intermittency. In this work we use a three-dimensional multiphase

Smoothed Particle Hydrodynamics (SPH) model to simulate surface tension

dominated flow on smooth fracture surfaces. We model droplet and film flow

over a wide range of contact angles and Reynolds numbers encountered in

such flows on rock surfaces. We validate our model via comparison with
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existing empirical and semi-analyical solutions for droplet flow. We use the

SPH model to investigate the occurrence of adsorbed trailing films left be-

hind droplets under various flow conditions and its importance for the flow

dynamics when films and droplets coexist. It is shown that flow velocities

are higher on prewetted surfaces covered by a thin film which is qualitatively

attributed to the enhanced dynamic wetting and dewetting at the trailing

and advancing contact lines. Finally, we demonstrate that the SPH model

can be used to to study flow on rough surfaces.
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1. Introduction

Understanding physics of fast flow through unsaturated fractured rocks,

is important for management of groundwater resources and prediction of

repository performance in hard rock regions [1, 2]. The uncertainties range

from process understanding at local scale to that of hydraulic understanding

of regional fault zones [3]. Simulation of unsaturated flow in hard rocks

represents a challenge due to highly non-linear free-surface flow dynamics and

the complexity of interactions between flow in a fracture and the surrounding

matrix. Hard rock formations contain fractures and other discontinuities

with varying spatial parameters including orientation, density and aperture

distributions [2]. Volumetric flow rates of water in unsaturated fractures may

differ by several orders of magnitude from flow rates through the porous rock

matrix. In sites where the rock matrix has a small permeability, fractures
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may provide the primary pathways for percolation of water to the phreatic

zone [4]. In this case, classical modeling approaches [5, 6] for unsaturated

flow in porous media may not be accurate for flow in fractured rocks.

Recent laboratory experiments of Tokunaga and Wan [7] and Tokunaga

et al. [8] have shown that film flow contributes significantly to the overall

unsaturated flow in fractured rocks. Depending on the matric potential, i.e.,

the saturation of the matrix, films with thickness up to 70µm and average

flow velocity of 3·10−7 m/s may develop on fracture surfaces providing an

efficient preferential pathway for laminar flow. Even faster flow velocities

on fracture surfaces may develop due to the presence of droplets [9, 10],

continuous rivulets [11, 12, 13, 14, 15] and falling (turbulent) films [16]. As

noted by Doe [9] and Ghezzehei [16] these flow regimes may coexist with

adsorbed films, however their influence on the faster flow regimes such as

droplets has not been investigated by these authors and is also part of this

work.

Flow rates during transitions between droplets, rivulets and falling films

can range significantly in magnitude, and have been investigated by Ghezze-

hei [16] using an energy minimization principle. The approach is partially

based on the findings of Podgorski et al. [17]. The authors investigated

droplet flow on inclined surfaces and proposed a dimensionless linear scal-

ing law to quantify flow velocities and provide a general framework and a

unified dimensionless description of such flow processes. In order to apply

the scaling to arbitrary fluid-substrate systems Ghezzehei [16] introduced a

dimensionless scaling parameter. In this study, we employ this scaling law

in a quantitative study of droplet flow on dry and wet fracture surfaces.
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Given the complexity of the small-scale flow dynamics and the heteroge-

nous nature of fractured rock surfaces, numerical models provide a significant

addition to laboratory experiments and analytical solutions to investigate

these systems. Models have to resolve the highly dynamic fluid interfaces as

well as boundary geometries.

Traditional grid-based methods, such as Finite-Element or Volume of

Fluid [18, 19] methods, in general require complex and computationally de-

manding interface tracking schemes. Furthermore, these methods have to

rely on empirical boundary conditions specifying dynamic receding and ad-

vancing contact angles as a function of velocity. Lagrangian particle methods

offer a versatile treatment of multiphase flows in domains with a complex ge-

ometry. In particle methods, there is no need for front-tracking algorithms

to detect a moving interface as it moves with the particles. In addition par-

ticle methods are rigorously Galileian invariant as particle interactions only

depend on relative differences in positions and velocities of the interacting

particles. Furthermore, particle methods exactly conserves mass, energy and

momentum due to antisymmetric particle-particle forces. Depending on the

form of forces acting between particles, particle methods can model fluid flow

on different spatio-temporal scales.

Molecular Dynamics (MD) is able to accurately model multiphase fluid

flow on a molecular scale but modeling flow in a reasonably-sized porous

domain or fracture is far out of reach of modern MD codes, even in state-of

the-art High-Performance computing facilities.

Smoothed Particle Hydrodynamics (SPH, Lucy [20], Gingold and Mon-

aghan [21]) can be seen as upscaled formulations of MD in which particles
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represent fluid volumes and forces acting between particles of the same fluid

phase are obtained from a meshless discetization of the Navier-Stokes equa-

tions [22]. Due to the similarity to MD, the surface tension and static and

dynamic contact angles can be modeled via molecular-like pair-wise interac-

tion forces [23]. Making these forces “soft”, i.e., creating forces that have a

finite magnitude for small (and zero) distances between a pair of particles, al-

lows the SPH multiphase model to simulate flow on hydrodynamics time and

length scales. A critical review of various numerical methods for multiphase

flows in porous and fractured media can be found in [24]. Application of

SPH for modeling flow in porous media has been demonstrated by, amongst

others, Holmes et al. [25], Tartakovsky and Meakin [26], Tartakovsky et al.

[27], Holmes et al. [28].

In this work we use a SPH model to study free-surface fluid flow on

smooth and rough wide aperture fractures, i.e., flow bounded by a single

fracture surface. This SPH model has been used before to study multiphase

and free surface flows [23, 29, 30, 27], but has not been rigorously validated

for three-dimensional free-surface flow dominated by capillary forces. We

demonstrate that the SPH method of Tartakovsky and Meakin [23] can be

applied to model dynamics of droplets on dry surfaces. Our simulations

show how wetted surfaces naturally arise from droplet wetting dynamics and

demonstrate the effect of prewetted surfaces on droplet flow.

The objectives of this work are: (1) the verification of the SPH model

with existing empirical and semi-analytical solutions; (2) the investigation of

droplet wetting behavior on initially dry surfaces for a wide range of wetting

conditions; and (3) the study of transient droplet flow on fracture surfaces
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covered by adsorbed films using the SPH model. To ensure numerical accu-

racy of the SPH simulations, the effect of resolution on static contact angles

is investigated. Contact angle hysteresis for droplets in a critical state, i.e.,

at the verge of movement, is simulated and compared to laboratory data

of ElSherbini and Jacobi [31, 32]. Transient droplet flow is verified using

the dimensionless linear scaling of Podgorski et al. [17]. The formation of

adsorbed films emitted from droplets on initially dry fracture surfaces and

their influence on droplet flow is investigated. The effect of surface roughness

on flow velocities is demonstrated.

2. Method

In the following we give a brief description of the SPH method and the

governing equations. More detailed derivations and approximations involved

in the SPH method can be found for example in Monaghan [33] and Tar-

takovsky and Meakin [23].

To derive a SPH discretization of the Navier-Stokes equations, one can

start with the definition of the Dirac δ function

f(r) =

∫
Ω

f(r′)δ(r − r′)dr′, (1)

where f(r) is a continuous function defined on a domain Ω and r is the

position vector. In SPH, for computational reasons, the δ function is replaced

with a smooth, bell-shaped kernel function W [33] that produces a smoothed

approximation 〈f(r)〉 of f(r):
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〈f(r)〉 =

∫
Ω

f(r′)W (|r − r′|, h)dr′. (2)

For the sake of simplicity we drop the angular brackets denoting the

approximation in the following. The kernel W (|r − r′|, h) satisfies the nor-

malization condition

∫
Ω

W (|r − r′|, h)dr′ = 1 (3)

and has a compact support h such that W (r, h) = 0 for r > h. In the

generalized limit of h→ 0, the following condition is satisfied:

lim
h→0

W (|r − r′|, h) = δ(r − r′). (4)

We use a fourth-order weighting function W [34]:

W (|r|, h) = αk
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where αk = 81/(359πh3).

Eq. (2) can be approximated as

f(r) =
N∑
j=1

f(rj)W (|r − rj|, h)∆Vj, (6)
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where the domain space is discretized with a set of N particles. If f(r) is

a scalar or vector property of a fluid (e.g. fluid density or velocity), then

we replace the finite volume ∆Vj by mj/ρj (mj and ρj are the mass and

mass density of a fluid carried by particle j) and obtain a general SPH ap-

proximation for f and its gradient in terms of the values f at points rj ,

fj = f(rj),

f(r) =
N∑
j=1

mj
fj
ρj
W (|r − rj|, h), (7)

and

∇f(r) =
N∑
j=1

mj
fj
ρj
∇W (|r − rj|, h), (8)

where ∇W (|r − rj|, h) is computed analytically.

Flow of each fluid phase is governed by the continuity equation,

dρ

dt
= −ρ (∇ · v) (9)

and the momentum conservation equation

dv

dt
= −1

ρ
∇P +

µ

ρ
∇2v + g, (10)

subject to the Young-Laplace boundary conditions at the fluid-fluid interface

(Pn − Pw)n = (τ n − τw) · n + Sσn (11)

and, under static conditions, the Young equation at the fluid-fluid-solid in-

terface,

Tnw cos θ0 + Tsw = Tsn, (12)

where v is the volocity, τ =
[
µ(∇v +∇vT)

]
is the viscous stress tensor, ρ is

the density, µ is the viscosity, and P is the pressure of the corresponding fluid
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phase. The subscripts n and w denote the non-wetting and wetting phases,

correspondingly; S is the curvature of the interface and σ is the surface

tension. The normal vector n is pointed from the non-wetting phase. The

coefficients Tnw, Tsw, and Tsn are the specific interfacial energy between non-

wetting, wetting and solid phases. The static contact angle θ0 is a constant

parameter for a given fluid-fluid-solid system. Under dynamic conditions,

approximate models, such as creeping flow and lubrication flow [35], and

phenomenological models [36, 37] are used to relate the contact angle to

local velocities or stresses.

Using Eqs. (7) and (8), the Navier-Stokes Eqs. (9) and (10) subject to

the boundary conditions (11) and (12) can be discretized as [38, 39, 23]:

dvi
dt

= −
N∑
j=1

mj

(
Pj
ρ2
j

+
Pi
ρ2
i

)
rij
rij

dW (rij, h)

drij

+ 2µ
N∑
j=1

mj
vij

ρiρjrij

dW (rij, h)

drij
+ gsph +

1

mi

N∑
j=1

F ij, (13)

and
dri
dt

= vi, (14)

where vi is the particle velocity, t is the time, Pi and µ are the fluid pressure

and viscosity at ri, rij = |rij|, rij = ri − rj, and vij = vi − vj.

For computational efficiency we set h and the mass of the SPH particles

mi to unity. A common link-list approach with an underlying square-lattice

of size h is used to rapidly locate all particles within the interaction range h.

All variables in the SPH model are given in consistent model units. Particle-

particle interaction forces F ij are added to the SPH momentum conservation

9



equations to generate surface tension [23]. The exact form of this force is not

very important as long as it is anti-symmetric and short range repulsive, long

range attractive, and is zero for a distance between particles i and j greater

than h. In this work we construct F ij following Liu et al. [40] who employed

this type of interaction force in DPD models. The function consists of two

superposed kernel functions W1(rij) = W (rij, h1) and W2(rij) = W (rij, h2),

F ij =


s
(
AW1(rij, h1)

rij

rij
+BW2(rij, h2)

rij

rij

)
rij ≤ h

0 rij > h,

(15)

where A = 2.0, h1 = 0.8, B = −1.0 and h2 = 1.0. The resulting force is

smooth and continuous with short-range repulsive and long-range attractive

parts as seen in Fig. 1. The parameter s controls the interaction strength

and has values ssf (solid-fluid) and sff (fluid-fluid). Other forms of the

interaction force have been used for example by Tartakovsky and Meakin

[23] who employed a cosine function. Regardless of the specific form of F ij,

the combined effect of the pair-wise forces on any particle away from the

fluid/fluid interface is near zero. Small deviations from the zero could be

caused by deviations from Within the distance h from the interface, F ij

generates a total force acting on particles in the direction normal to the

interface. In such, the SPH model is similar to the Continuous Surface Force

method [41] for solving the Navier-Stokes equations subject to the Young-

Laplace boundary condition at the fluid-fluid interface.

The density ρ can be obtained from the general field approximation

(Eq. 7) with fj = ρj as,
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ρi =
N∑
j=1

mjW (ri − rj, h). (16)

The system of SPH equations is finally closed by a van der Waals equation

of state:

P =
ρ(kbT/m)

1− ρ(b/m)
− a

m
ρ2, (17)

where kb is the Boltzmann constant, m is the mass of an SPH particle, T is

the temperature and a and b are the van der Waals constants. Values for the

constants are kbT = 1.6, a = 3.0 and b = 1/3.

The SPH Eqs. (13) and (14) are integrated using a ”velocity-Verlet” time

stepping algorithm [42]:

ri(t+ ∆t) = ri(t) + ∆tvi(t) + 0.5∆t2ai(t) (18)

vi(t+ ∆t) = vi(t) + 0.5∆t [ai(t) + ai(t+ ∆t)] . (19)

At each time step the density is evaluated using Eq. (16), the pressure

is obtained from Eq. (17) and finally the acceleration is calculated from

Eq. (13). Stability of the solution is ensured by the following time step

constraints [23]:

∆t ≤ 0.25 min
i

(
h

3|vi|

)
(20)

∆t ≤ 0.25 min
i

(√
h

3|ai|

)
(21)

∆t ≤ min
i

(
ρih

2

9µ

)
, (22)
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where | · | is the magnitude of a vector.

The model is initialized by placing particles randomly inside the sim-

ulation domain until the desired number density is reached. The random

particle positions may lead to spurious velocities and noisy results. To avoid

this, the model is equilibrated by evolving particle positions according to

Eqs. (18 – 19) with sij = 0 and gsph = 0, subject to periodic boundary con-

ditions. A higher viscosity is used at this step for (dissipative) viscous forces

to quickly dampen velocity fluctuations. In this study, we assume that the

flow of the liquid phase is not affected by the gas phase and solve the Navier-

Stokes equations for the liquid phase only (i.e., SPH particles are only used

to discretize liquid and solid phases).

Here we model droplet flow on inclined solid surfaces that form an an-

gle α with the horizontal direction. To simplify the implementation of the

SPH model, without loss of generality, we assume that the solid surface is

horizontal and the body force acts at the angle 90◦ − α to the horizontal

direction:

gsph = g


cos
(
90◦ − α π

180◦

)
0

−sin
(
90◦ − α π

180◦

)
 . (23)

The final model setup consists of identifying liquid and boundary particles

and removing particles from the gas phase. The summations in Eqs. (13)

and (16) are over both liquid and boundary particles within the distance h

from particle i. We assign the fluid viscosity to boundary particles, with

the velocity of the boundary particles being zero. The viscous interaction

between liquid and boundary particles generate no-slip boundary conditions
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and the repulsive components of the F ij force and the force resulting from

the discretization of the pressure gradient produce the no-flow boundary

condition. It should be noted that solid surfaces are not shown in some

figures for reasons of clarity.

3. Model Calibration

3.1. Surface Tension

In our SPH model surface tension is not prescribed explicitly. It arises from

the particle interaction forces and, for given A, B, h1 and h2, the surface

tension depends on sff . Here we set the fluid-fluid interaction parameter to

sff = 0.05. A liquid droplet in a gas phase is simulated in zero gravity and

the surface tension is obtained from the Young-Laplace law:

σsph =
Req

2
∆P, (24)

where Req is the droplet radius and ∆P is a difference in pressure inside and

outside of the droplet. Since we do not explicitly model the air phase, the

pressure outside of the bubble is zero and ∆P is equal to the liquid pressure

P inside the bubble.

It should be noted that the employed EOS results in attractive and repul-

sive forces (these forces are combined in the first term on the right-hand-side

of Eq. (13), Tartakovsky et al. [27]), but for problems with free-surfaces the

attractive forces are not strong enough to generate surface tension (e.g. to

form stable fluid bubbles). The addition of the F ij forces is needed to create

surface tension, which generates additional pressure. A total fluid pressure
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within a volume Vr with radius rv can be found from the virial theorem as

shown by Tartakovsky and Meakin [23] and Allen and Tildesley [42]:

P =
1

2dVr

∑
i

∑
j

rijf ij =
1

8r3
v

∑
i

∑
j

rijf ij, (25)

where d = 3 in a three-dimensional system and f ij = midvi/dt. In the

double summations, the first summation is over all particles within distance

rv from the center of the droplet. The second summation is over all SPH

particles. Since the range of the forces fij is equal to h, only particles within

the distance rv+h should be considered in the second summation. To exclude

the boundary effect, we set rv = Req − h. Droplets are equilibrated using a

higher viscosity such that droplet oscillations are quickly dampened and P

can be determined. As the contribution of the viscous force to f ij is zero

at equilibrium conditions the resulting pressure P is independent of viscous

forces and, hence, the prescribed model viscosity. Surface tension obtained

from the simulations of droplets of different sizes is nearly constant as can

be seen in Fig. 2. However, if droplet radii are close to h, our results

deviate slightly from the Young-Laplace law due to an insufficient numerical

resolution.

All simulations shown in this paper use an interaction force of sff = 0.05

which yields a surface tension of σsph = 0.25 (in SPH model units) that was

calculated as a half of the slope of the linear part of the curve in Fig. 2.

3.2. Static Contact Angles

For given A, B, h1, h2 and sff , the contact angle depends on sfs. Here

we study numerically the dependance of the static contact angle on sfs and
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resolution of the SPH model. This is done by simulating the behavior of a

droplet that is slowly brought into contact with a flat surface. Under static

conditions, this system can be described by the dimensionless Bond number,

Bo =
ρgV 2/3

σ
, (26)

where V is the volume of a droplet. In this study we consider droplets

with Bo = 1. This corresponds to a water droplet with a volume of V =

20.86 mm3. In the simulations described in this section, the density has an

average value of ρsph = 39.2 in the model units. The characteristic size of the

droplet is in the range V 2/3 = 8.15 – 88.95h2, depending on the resolution.

The surface tension is set to σsph = 0.25. The gravitational acceleration is

adjusted to the change in volume (numerical resolution) in order to keep the

Bond number constant and ranges between gsph = 0.000782 – 0.0000717. All

parameters are given in SPH model units.

To study the dependence of the static contact angle on ssf , we discretize

the droplet with 20390 particles that corresponds to the characteristic size

of the droplet of V 2/3 = 60.44h2. The simulation domain has dimensions of

x = 32h, y = 32h and z = 16h with a layer of solid particles of thickness

1h. Droplets are initially equilibrated in the absence of gravity. Gravita-

tional acceleration and solid-fluid interaction force are then gradually in-

creased up to the prescribed values of gsph = 0.0001139 and ssf = 0.05,

which corresponds to Bo = 1.0. We then decrease the interaction force

(ssf = 0.05, 0.04, ...0.01, 0.005, 0.001) in order to determine the dependence

of the contact angle on ssf . Contact angles are measured “visually” once

a stationary state is reached (see Fig. 3) by determination of the three-
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phase contact line and the best fitting tangent [43]. As droplets may not be

perfectly axisymmetric, two orthogonal cross-sections are extracted and the

mean is taken from four measurements (one on each side of a cross-section).

We also fitted a third-order polynomial to the particle hull. Knowing the

polynomial, the contact angle at the base of the droplet can be determined

analytically. This method may be more reproducible, though depending on

the discretization, it may lead to high deviations as surfaces are not perfectly

smooth due to their particle nature.

In order to investigate the influence of the resolution on the static contact

angle we use nine droplet radii ranging from Req = 1.77h (902 particles) to

Req = 5.85h (77993 particles) while keeping the Bond number constant at

Bo = 1.0. Fig. 4 shows the resulting static contact angles for each droplet

discretization and all fluid-solid interaction forces. Contact angles of droplets

with higher resolution are closer to the mean values, however, as there is no

systematic deviation from the mean at lower resolutions we conclude that the

scatter of data is only a result of the measurement and not of numerical origin.

Fig. 5 shows the static contact angles for each strength of the interaction

force ssf and the standard deviation. Simulations are restricted to static

contact angles between about 110◦ and 25◦ corresponding to ssf = 0.01 and

ssf = 0.05.

It should be noted that for very high values of the solid-fluid interaction

force (ssf > 0.05, i.e., very low contact angles) the droplet wedges may not

be adequately resolved depending on the chosen discretization leading to an

improper macroscopic appearance of contact angles.
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4. Verification of Droplet Flow on Dry Surfaces

Transient droplet dynamics on surfaces have been investigated by numerous

authors using laboratory experiments [44, 45, 17, 31, 32], theoretical methods

[46, 47], and numerical models [48, 49, 50]. In the following, we show that

our model agrees with empirical and semi-analytical solutions and thus can

be consistently calibrated for a wide range of fluid-substrate configurations.

4.1. Critical Contact Angles

Here we investigate droplets in a critical state, i.e., at the onset of a

sliding motion on an inclined plate.

Under dynamic conditions, two contact angles can be identified: the ad-

vancing contact angle θA, the contact angle at the drop front perpendicular

to the direction of motion; and the receding contact angle θR, the contact

angle at the drop’s rear.

The dynamic contact angles at a critical state have been studied by,

amongst others, ElSherbini and Jacobi [31, 32]. Their results suggest that

droplets on the verge of sliding exhibit a general relation between contact

angles and Bond number independent of the static contact angle. ElSherbini

and Jacobi [31] examined the dynamic contact angles around the perimeter

of the drop and showed that at the critical state the maximum angle θmax

is equal to the advancing contact angle (θmax ≈ θA) and the minimum angle

θmin is equal to the receding contact angle (θmin ≈ θR) for all investigated

fluid-substrate combinations and Bond numbers ranging from 0.0 to 3.0.

These findings are in accordance with results of Macdougall and Ockrent

[51] and Tsukada et al. [52]. Here the Bond number is defined as
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Bo′ =
ρg(2R)2

σ
sin(α), (27)

where α is the inclination angle of the surface measured from the horizontal.

Based on laboratory experiments ElSherbini and Jacobi [31, 32] proposed a

general non-linear (quadratic) relation between θmin/θmax and Bo′:

θmin
θmax

= 0.01Bo′2 − 0.155Bo′ + 0.97. (28)

For the numerical experiment we use several fluid-substrate configurations

by varying static contact angles. This is done by varying ssf from 0.0 to 0.05.

In these simulations, the drop sizes range from Req = 1.77 to 5.85, resulting

in Bo′ = 0.14 – 2.8. Gravitational acceleration is set to gsph = 0.000164,

average density is ρsph = 39.2 and surface tension σsph = 0.25.

Similar to the determination of static contact angles, the droplets are

equilibrated by setting gsph = 0.0 and then slowly placed on a horizontal

surface by increasing the gravitational acceleration. When the height of

the droplets becomes constant (the droplets reached an equilibrium on a

flat surface), we start increasing the surface inclination by one degree every

150 time steps giving the drop enough time to adjust. The receding and

advancing contact angle are measured when droplet movement of the receding

and advancing contact line sets on, i.e., at the critical state. Fig. 6 shows

a droplet with radius Req = 4.82h and four different static contact angles

between 60◦ and 110◦ (ssf = 0.01, 0.02, 0.025, 0.03) in its critical state.

Our results are in a good agreement with the findings of ElSherbini and

Jacobi [31] as shown in Fig. 7. Most of our numerical results are within

the margin of error of the experimental measurements in ElSherbini and
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Jacobi [31]. A slight deviation can be observed for very high Bond numbers

above 2.0. We believe that this may be a result of: (1) the error introduced

when measuring the contact angles in our simulations; and (2) an insufficient

discretization of the droplet wedges at low contact angles (i.e., high solid-

fluid interaction forces) that are necessary to achieve a critical state at such

high inclination angles (i.e., Bond numbers).

4.2. Dimensionless Scaling

Transient droplet flow on subhorizontal surfaces can be extremely com-

plex. However, as shown by Podgorski et al. [17] a general scaling law can be

applied in order to quantify droplet flow dynamics within a certain range of

conditions. Based on laboratory experiments using silicon oils and deionized

water as well as several substrates, Podgorski et al. [17] proposed a linear

scaling law that relies on a force balance:

Ca ∼ Bo sin(α)−∆θ, (29)

where the capillary number is defined as

Ca = µv/σ, (30)

with v being the droplet velocity, α is the surface inclination angle mea-

sured from the horizontal and ∆θ is a perimeter-averaged projection factor

of the surface tension. In order to apply the scaling to various static contact

angles in our numerical experiments, we follow Ghezzehei [16] to define a

proportionality constant γ such that Eq. (29) becomes
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Ca = γ Bo sin(α)−∆θ (31)

and γ and ∆θ can be determined as empirical constants unique for a given

static contact angle.

The model domain used for transient droplet flow has dimensions x =

128h, y = 64h and z = 16h which corresponds to 45.7 x 22.8 x 5.7 mm in SI

units. Periodic boundary conditions are used in the x- and y-directions.

The model is set up analogous to a typical laboratory experiment for mea-

surements of contact angles. After a droplet equilibrates on a surface with

prescribed inclination for the desired interaction force (ssf = 0.01, 0.02...0.05),

gravitational acceleration is gradually increased until the prescribed value of

gsph = 0.0001139 is reached.

Bond number in the simulations range from 0.14 to 1.5, with the droplet

radii ranging between 1.77h and 5.85h or 0.63 and 2.09 mm. Surface incli-

nations are held constant throughout each simulation at angles ranging from

10◦ to 90◦ measured from the horizontal. This yields a total of 81 Bo ·sin(α)

values for every static contact angle θ0. In addition we also use three differ-

ent values for the viscosity (µsph = 0.01, 0.03, 0.1) to cover a feasible range

of Reynolds numbers observed in water-rock systems. Depending on the

contact angle, obtained Reynolds numbers range from Re = 302 – 3908 for

µ = 0.01, Re = 67 – 1299 for µ = 0.03, and Re = 15 – 387 for µ = 0.1.

Droplet bulk velocities are measured as soon as the maximum velocity

is reached. We track the droplet front position and evaluate ∆x/∆t where

∆t is a time interval long enough to average out fluctuations in particles

positions that may occur at the droplet front due to the dynamic wetting
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process. This behavior can be observed at low Bond numbers when body

forces only partially exceed drag forces due to the slightly non-homogeneous

density distribution of the wall particles.

Fig. 8 shows simulation results for two different droplet sizes Req =

2.8h and 4.82h (Bo = 0.34, 1.02) at the same time for several viscosities,

static contact angles at an inclination angle of α = 90◦. Note that the

maximum velocity of some droplets at very low capillary numbers (e.g. for

ssf = 0.01, θ0 = 110◦) occurs after crossing the x-direction periodic boundary.

The shown simulation snapshots are taken before the droplets crossed the

boundary and droplet shapes are mainly round or slightly cornered at this

(early) time such that the force balance assumptions of Podgorski et al. [17]

are correct. However, depending on capillary and Bond number, the scaling

law is applied only to fully accelerated droplets, which show several effects

that have to be considered for the interpretation of the results.

As noted by Podgorski et al. [17] the linear scaling fails above a certain

capillary number in the pearling regime when droplets develop strong tails

and emit smaller static droplets via a Rayleigh-like instability. Subsequent

droplets that absorb such emitted droplets may experience a drag reduction

when the emitted droplet size is big enough. Consequently, γ values deter-

mined in the laboratory experiment are slightly higher in this regime and

cannot be determined independent of droplet size (i.e., Bond number). Fur-

thermore, the scaling can only be applied to droplets with a radius smaller

or on the order of the capillary length λc of the fluid, where

λc =

√
σ

ρg
, (32)
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which assumes values of R = 56h (2.75 mm at average subsurface tempera-

tures of 10◦C).

For droplets that do not strongly deviate from the rounded or cornered

shape, the velocities (or Ca) obtained from the SPH simulations agree with

the Podgorski scaling (see Fig. 9). However, for hydrophobic surfaces (i.e.,

θ0 = 110◦) the velocities obtained from the SPH model deviate from the linear

scaling predicted by the theory of Podgorski et al. [17]. This disagreement

can be explained by the fact that a droplet on a non-wetting surface and

flowing down with high velocity may develop a rolling behavior that violates

the force balance assumptions in the Podgorski et al. [17] theory.

We observe top view droplet shapes ranging from round to slightly cor-

nered and strongly elongated for high static contact angles (ssf = 0.01, 0.02)

(see Fig. 10). As a result, droplets above a certain Ca value experience a

drag increase due to the higher contact area such that γ values (given by a

slope of the linear part of the curves in Fig. 9) become lower (see for exam-

ple the upper row, data points above dashed line). Due to the poor linear

relationship in this Ca range the scaling depends on the areal extent of the

droplet such that no common γ value can be determined for all simulations.

For lower static contact angles (ssf = 0.03, 0.04, 0.05) droplets develop

a trailing film of varying thickness which is only poorly developed for in-

termediate static contact angles (ssf = 0.03, θ0 = 60◦) as can be seen in

Fig. 11. Within the simulated timespan the change in droplet mass, i.e.,

the ratio of fluid volume in the film and in the droplet, is negligible such

that the force balance of Podgorski et al. [17] can still be applied. However,

for longer simulations it is clear that droplet movement will slow down and
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finally stop when the droplet sizes are below the critical Bond number and

the main fluid volume resides in the film. The formation of trailing droplets,

as it has been observed by [17], is present in our simulations, however, due

to their small size (relative to h) the trailing droplets are resolved by only a

few SPH particles and most likely do not behave quantitatively correct. Fur-

thermore, the pronounced pearling regime described by [17] occurs for Bond

numbers above 1.5 (and static contact angles of about 50◦), which we do not

cover in our simulations. To our knowledge the occurrence of trailing films

over such a range of wetting properties has not been quantified in laboratory

experiments, therefore the influence of this on droplet flow is shown in the

following section.

5. Droplet Flow on Inclined Wet Surfaces

We define a stationary moving droplet as a droplet whose mass and shape

does not change as it flows down the surface. In the above section we ob-

served that stationary moving droplets cannot be formed on a dry surface if

the static contact angle is small. To study dynamics of stationary moving

droplets with low static contact angles, we conduct a second set of simulations

using a prewetted surface. The initial surface film thickness is determined by

probing the film left behind in the simulations with initially dry conditions

in order to find the appropriate average amount of particles. We assume that

the thickness of trailing films in our simulations reflects the maximum fluid

capacity kept as film for a given fluid-substrate combination and thus acts

as a lubrification for droplets by enhancing the dynamic wetting and dewet-

ting at the advancing and receding contact line. Furthermore, a stationary
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moving droplet develops at a maximum velocity.

Even though droplets at intermediate static contact angles (ssf = 0.03,

θ0 = 60◦) also leave behind partial films, it is impossible to create a prewet-

ted surface as the initial films immediately break up via a Marangoni-like

instability for ssf ≤ 0.03 (see Fig. 12). Consequently droplets will coalesce

and their volume changes such that the force balance cannot be applied.

Therefore we restrict the simulations with prewetted surfaces to static con-

tact angles θ0 = 25◦ and θ0 = 40◦.

Fig. 13 shows droplets at maximum acceleration sliding on the prewet-

ted surface. The film thickness varies between 0.3 – 0.5h which corresponds

to 107 – 178µm. This is higher than what has been reported for example by

Tokunaga and Wan [7], Tokunaga et al. [8] (2 – 70µm) and Dragila and Weis-

brod [10] (0.9 – 40µm) but of the right order of magnitude. However, as also

noted by Tartakovsky and Meakin [23], depending on the chosen SPH resolu-

tion, simulations may become (1) computationally too expensive in order to

cover such length scales and (2) hydrodynamics of thin adsorbed films may

not be adequately represented by the Navier-Stokes approximations when

chemical potentials dominate flow behavior [53, 54].

Applying the dimensionless scaling to the prewetted simulations yields

a general increase of γ values with droplet velocities being nearly tripled

for a viscosity of µsph = 0.1 (see Fig. 14). Fig. 15 gives a comprehensive

overview of the scaling parameter and shows that the velocity increase is

less pronounced at lower viscosities (µsph = 0.01, 0.03). Partially, this might

be caused by droplets still “loosing” SPH particles to the prewetted surface,

especially during the initial placement of the droplets when the gravitation
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is slowly increased. We use only droplets with radii bigger than 4.31 h to

determine the scaling, as smaller droplets below the critical Bond number

are stuck on the surface but may still display some fluctuating movement

induced by interaction with the film.

Fig. 16 shows the resulting maximum Reynolds numbers from our nu-

merical experiments under dry and prewetted surface conditions for all tested

static contact angles. Ranges for the occurrence of adsorbed films, which de-

velop under dry surface conditions when droplets leave behind trails, are

given as a function of ssf and Re where

Re =
ρvV (1/3)

µ
. (33)

In general two flow regimes can be distinguished: (1) droplets without

trailing films and (2) droplets with trailing films of varying thickness. The

former can be observed over the whole range of the modeled viscosities with

a static contact angle of ∼110◦ (ssf = 0.01). At lower static contact angles

(between 80◦ and ∼60◦) only droplets with a viscosity of µ = 0.1, i.e., lower

Reynolds numbers, are free of trailing films. Droplets with a static contact

angle smaller ∼80◦ (ssf = 0.02) and µ ≤ 0.03 all leave trailing films where the

film thickness is higher for lower viscosities and/or lower static contact angles.

This observation can be attributed to the fact that both lower viscosity and

lower static contact angle (corresponds to small ratio sff/ssf ) facilitate the

fluid spreading along the surface.

The calculated Reynolds numbers and the range of static contact angles

are in agreement with the ranges reported in literature. For example, the

highest Reynolds number obtained in our simulations is of the same order
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obtained in a laboratory experiment for a similar microscale system [13].

Static contact angles reported in experiments range from 23◦ to 70◦ (e.g.

[55, 56, 57, 11]) and are also within the range of angles produced by our SPH

model. Therefore, the presented simulation results give a comprehensive

overview of the flow dynamics that could be expected under experimental

and most common field conditions.

6. Droplet Flow on Rough Surfaces

Here we study the effect of surface roughness on the droplet flow. The

simulation setup now consists of surfaces with a self-affine fractal geometry

[58] described by the Hurst exponent ζ [59], which has a nearly constant value

of about 0.8 ± 0.05 independent of the material [60, 61]. The domain size

for the simulations is the same as in section 4.2. We employ three surfaces

with a Hurst exponent of ζ = 0.75, 0.50, 0.25 (see Fig. 17). The viscosity

is set to µ = 0.03 and the droplet radius is 5.85h. The surface inclination is

set to 90◦ and 45◦ and solid-fluid interaction forces are ssf = 0.01, 0.02, 0.03

(θ0 = 110◦, 80◦ 60◦). Fig. 18 shows the resulting Reynolds numbers (i.e.,

dimensionless velocity) for the surfaces with different roughnesses and the

smooth surface. Our results shows that surface roughnesses decreases the

velocity of droplets. For θ0 = 110◦ and 80◦ we observe the velocity decrease

between 33% and 37% for a roughness coefficient ζ = 0.75 in comparison with

the smooth surface. These results are independent of the surface inclination.

For θ0 = 60◦, the velocity decreases by as much as 80% for an inclination angle

of 90◦ and 98% for in inclination angle of 45◦. For lower Hurst exponents,

i.e., ”rougher” surfaces, droplets with static contact angle of 60◦ barely move,
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while for higher contact angles the velocity is almost linearly proportional to

ζ, i.e., the velocity decreases linearly with decreasing Hurst exponent. Our

simulations suggest that, for low contact angles, little pits and depressions

created by the roughness cause an additional capillary suction which prevents

the movement of droplets.

7. Conclusion

We employed a three-dimensional multiphase SPH model to simulate

gravity-driven free-surface flow dominated by the effects of surface tension.

The model uses pair-wise interaction forces to represent fluid-fluid and fluid-

solid interactions and allows modeling a wide range of wetting conditions.

Various flow conditions have been investigated and the model ability to sim-

ulate (1) wetting and non-wetting droplet flow on dry surfaces and (2) flow

on surfaces prewetted with adsorbed films has been demonstrated.

Static contact angles of sessile droplets are shown to be independent of the

chosen resolution, i.e., computation time can be saved while still preserving

physically correct model behavior.

The dynamic contact angle hysteresis for droplets at the verge of move-

ment, i.e., at the critical state, matches empirical experiments of ElSherbini

and Jacobi [31]. Droplets with higher Bond numbers (that is, low static con-

tact angles and higher inclination angles at a critical state) exhibit a slightly

higher θmin/θmax ratio which is believed to be a result of an insufficient res-

olution of droplet wedges.

In order to further verify our model for transient flow conditions we have

shown that it can reproduce the linear scaling proposed by Podgorski et al.
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[17]. We have demonstrated that Ca, Re, and contact angles agree with those

reported in laboratory experiments for water-rock systems for a wide range

of Bo. We have also shown that the SPH model can be used to estimate the

scaling parameter γ as a function of the static contact angle in the model of

Ghezzehei [16].

Our simulations show that the linear scaling fails as soon as droplet shapes

strongly deviate from a rounded or cornered shape. This is in accordance

with the observations of Podgorski et al. [17].

We found that droplets on dry surfaces leave behind trailing films for

small static contact angles and initially dry surfaces. These results agree with

experimental observations of Tokunaga and Wan [7] and Or and Tuller [53].

Prewetted surfaces are shown to increase droplets velocities by enhancing the

wetting and dewetting dynamics processes and thus, despite their relatively

slow velocities (3·10−7 m/s, [8]) can be an important part of flow dynamics

even if gravity-driven flow prevails. Our simulations show that fluid films

are stable for static contact angles below ∼40◦. These results indicate that

flow regime (droplets leaving behind a dry surface versus droplets leaving

behind discontinuous or continuous films) and droplet velocity (Reynolds

number) depend on the static contact angle and initial wetting condition of

the fracture wall (dry versus prewetted). Therefore, a flow regime may affect

the average flux in the fracture and should be accounted for in an effective

model.

We considered the effect of ”macroscale” roughness on the drop dynam-

ics and demonstrated that it affects traveling distance and transversal move-

ment. We define a macroscale roughness when the following conditions are
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satisfied: (1) the ratio of characteristic roughness length scale dr to aver-

age interparticle distance dp is on the order of one or higher; and (2) the

characteristic roughness length is much smaller than the capillary length λc.

Microscale roughness (i.e., dr/dp << 1 and dr/λc << 1) may result in more

complex phenomena such as the lotus effect [62, 48] and apparent contact

angles [63]. However, studying the effect of the microroughness is outside

of the scope of this work as simulation of such phenomena would require

exascale computations with the number of SPH particles on the order of 107

to 109.

The following topics deserve more attention for further model applica-

tions: (1) the critical transitions between different flow regimes, e.g. forced

wetting transitions such as Landau-Levich films which occur for very low con-

tact angles [47]; (2) shape transitions from oval to corner and cusps which

involve field singularities; and (3) transitions to rivulets and falling films.

Given that the application of our model is aimed towards fractured media

we defined a lower scale that we believe is a proper starting point for model

development and allows realistic computation times. Further model improve-

ments might cover implementation of more realistic boundary conditions,

however, for rough surfaces this is still an open question [64].

The presented simulations cover a wide spectrum of the possible flow

regimes and boundary conditions encountered in natural fractured aquifers.

Furthermore, these simulations demonstrate that SPH is a versatile method

and can be easily extended to simulate more complex systems, allowing for

a unified characterization of the flow and possibly transport processes across

the matrix-fracture interface in partial fracture networks on a centimeter to
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meter scale, which is the scope of future work.
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Figure 14: Dimensionless scaling for three viscosities µsph = 0.01, 0.03, 0.1 and two inter-

action strengths ssf = 0.04 and ssf = 0.05 with a prewetted surface. Scaling parameter

of the dry surface are shown for comparison. Note that droplets with radius Req < 4.31 h

are not moving but exhibit spreading effects and sudden particle fluctuations and are thus

not included in the calculation.
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Figure 15: Scaling parameter γ as defined by Ghezzehei [16] vs. viscosity µsph for all

investigated static contact angles under dry and prewetted surface conditions. Droplets

on prewetted surfaces display increased velocities by a factor of up to three (µsph = 0.1).
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Figure 16: Maximum Reynolds numbers for all investigated static contact angles and

viscosities for dry and prewetted surfaces. Trailing films vary in volume and appear more

pronounced at higher Reynolds numbers and static contact angles. Regime transitions

have been approximated based on simulation data.
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Figure 17: Advancing droplets on rough surfaces with Hurst coefficients ζ = 0.25, 0.5

and 0.75 at time t=2000 (0.13 s). Results are shown for droplets with µsph = 0.03 and a

solid-fluid interaction strength of ssf = 0.01, 0.02 and 0.03. The equilibrium radius of the

droplets is Req = 5.85.
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