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and advection-diffusion equations
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We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled
Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy
of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity
variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from
the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctua-
tions is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH
method for coupled LLNS and advection-diffusion equations, we simulate the interface between two
miscible fluids. We study formation of the so-called “giant fluctuations” of the front between light
and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid.
We find that the power spectra of the simulated concentration field are in good agreement with the
experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power
−4 of the wavenumber—except for small wavenumbers that diverge from this power law behavior
due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker
dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect
of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between
a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical
solutions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902238]

I. INTRODUCTION

In the presence of a macroscopic concentration gradient
(e.g., the concentration gradient across the front separating
two miscible fluids), non-equilibrium systems are known to
relax to an equilibrated state via diffusion.1, 2 On macroscopic
scales, diffusion is often approximated by Fick’s law.3 How-
ever, on mesoscopic or molecular scales, thermal fluctuations
become a significant part of the hydrodynamics and greatly
influence mixing. Thermal fluctuations may have a significant
impact on miscible fluids close to a hydrodynamic instability,
such as Rayleigh-Taylor and Kelvin-Helmholtz instabilities.
Fluctuations may also have significant qualitative impact even
on hydrodynamically stable miscible systems. For example,
thermal fluctuations produce anomalously large fluctuations
of the front separating two miscible fluids (with a light fluid
overlaying a heavy fluid). Such fluctuations are often called
“giant fluctuations” to emphasize the fact that they can be ob-
served by the naked eye.4–6

The fluctuations of thermodynamic quantities have been
extensively studied in the context of Brownian motion.
Einstein7 and Smoluchowski8 demonstrated that diffusion re-
sulting from the thermal fluctuations and random movement
of a particle in a fluid has the same origin as the dissipative
drag forces exerted on the particle by the fluid. Later, this
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relationship was quantitatively described by the fluctuation-
dissipation theorem.9

To capture the effect of thermal fluctuations on fluid
flow at the hydrodynamic scale, Landau and Lifshitz10 pro-
posed a stochastic form of the Navier-Stokes (NS) equa-
tions that is commonly referred to as Landau-Lifshitz-Navier-
Stokes (LLNS) equations. In LLNS equations, a random
stress is added to the NS equations, and the strength of
the random stress is related to the viscous stress via the
fluctuation-dissipation theorem. Similarly, a random mass
flux is added into the advection-diffusion equation to consis-
tently include the effect of thermal fluctuations on Fickian dif-
fusion. The most common numerical techniques for directly
solving LLNS and stochastic diffusion equations are based
on the finite-volume method.11–14 Stochastic Lattice Boltz-
mann models15 and smoothed dissipative particle dynamics
(SDPD)16, 17 have been used to model fluid flow in the pres-
ence of fluctuations, but these methods have not been derived
via the direct discretization of LLNS equations. For exam-
ple, SDPD is obtained by adding a random force into the
smoothed particle hydrodynamics (SPH) discretization of the
(deterministic) NS equations and relating the magnitude of
the random force to the viscous SPH force via the GENERIC
framework.18–20 Moreover, these methods have not been used
to solve stochastic diffusion equations coupled with LLNS
equations.

Here, we use the SPH method to solve stochastic par-
tial differential equations, including LLNS and advection-
diffusion equations. The SPH method provides an alternative

0021-9606/2014/141(22)/224112/14/$30.00 © 2014 AIP Publishing LLC141, 224112-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.76.77.111 On: Wed, 22 Apr 2015 14:19:49

http://dx.doi.org/10.1063/1.4902238
http://dx.doi.org/10.1063/1.4902238
http://dx.doi.org/10.1063/1.4902238
mailto: jkordil@gwdg.de
mailto: Wenxiao.Pan@pnnl.gov
mailto: alexandre.tartakovsky@pnnl.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4902238&domain=pdf&date_stamp=2014-12-10


224112-2 Kordilla, Pan, and Tartakovsky J. Chem. Phys. 141, 224112 (2014)

to SDPD for introducing fluctuations in the SPH flow equa-
tions. It also provides a consistent framework for discretiz-
ing other stochastic conservation equations. We demonstrate
the accuracy of the SPH solution of the LLNS equations by
comparing statistics of the fluctuations of pressure and ve-
locity with analytical solutions. The accuracy of the stochas-
tic advection-diffusion equation solution is verified by com-
paring moments of a conservative tracer with the analytical
solution. Finally, we use the coupled LLNS and advection-
diffusion equations to study the effect of fluctuations on the
diffusive front in the absence and presence of gravity. We an-
alyze the spatial correlation of the diffusive front geometry
and compare the results with theoretical predictions. Further-
more, the classical Rayleigh-Taylor instability is simulated to
verify the accuracy of the stochastic SPH model.

II. STOCHASTIC FLOW AND TRANSPORT
EQUATIONS

We study the isothermal stochastic NS equations includ-
ing the continuity equation

Dρ

Dt
= −ρ(∇ · v), (1)

the momentum conservation equation
Dv

Dt
= − 1

ρ
∇P + 1

ρ
∇ · τ + g + 1

ρ
∇ · s, (2)

and the stochastic advection-diffusion equation
DC

Dt
= 1

ρ
∇ · (ρDF ∇C) + 1

ρ
∇ · J . (3)

Here, D/Dt = ∂/∂t + v · ∇ is the total derivative, and ρ, v,
P, and g are the density, velocity, pressure, and body force.
DF is the Fickian diffusion coefficient. The components of
the viscous stress τ are given by

τ ik = μ

(
∂vi

∂xk
+ ∂vk

∂xi

)
, (4)

where μ is the (shear) viscosity and the bulk viscosity is as-
sumed to be equal to 2

3μ. C = C̃/Cmax is the normalized mass
fraction of solute, varying from zero to one (C̃ is the mass
fraction, and Cmax is the maximum mass fraction). In the fol-
lowing, we refer to C as concentration. The fluctuations in
velocity and concentration are caused by the random stress
tensor

s = σ ξ , (5)

and random flux vector

J = σ̃ ξ̃ , (6)

where ξ is a random symmetric tensor, ξ̃ is a random vec-
tor (whose components are random Gaussian variables), and
σ and σ̃ are the strengths of the corresponding noises.
The random stress is related to the viscous stress by
the fluctuation-dissipation theorem.10 For incompressible
and low-compressible fluids, the covariance of the stress

components is

sik(r1, t1)slm(r2, t2) = σ 2δ(r1 − r2)δ(t1 − t2)
(7)

σ 2 = 2μkBT δimδkl,

where kB is the Boltzmann constant, T denotes the temper-
ature, δ(z) is the Dirac delta function, and δij is the Kro-
necker delta function. The fluctuation-dissipation theorem is
also used to relate the random flux J to the diffusion term21

J i(r1, t1)J j (r2, t2) = σ̃ 2δ(r1 − r2)δ(t1 − t2)
(8)

σ̃ 2 = 2mmDC(1 − C)ρδij ,

where mm is the mass of a single solvent molecule. In gen-
eral, the fluid density and viscosity are functions of the solute
concentration C.

III. SPH DISCRETIZATION

Numerical discretization of the stochastic partial differ-
ential equations using SPH is based on the following identity
for a continuous field f (r) defined on a domain �:

f (r) =
∫
�

f (r ′)δ(r − r ′)d r ′. (9)

To construct a numerical scheme, the δ function is approxi-
mated with a smooth kernel function W yielding the integral
approximation of f (r)22

〈f (r)〉 =
∫
�

f (r ′)W (|r − r ′|, h)d r ′. (10)

The kernel W (|r − r ′|, h) satisfies: (1) the normalization
condition ∫

�

W (|r − r ′|, h)d r ′ = 1; (11)

(2) has compact support h, W (r > h, h) = 0; and (3) in the
limit of h → 0, W approaches the Dirac delta function

lim
h→0

W (|r − r ′|, h) = δ(r − r ′). (12)

In this work, we use a fourth-order weighting function to
describe W 23

W (|r|, h) = αk

h3

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
3 − 3|r|

h

)5
− 6

(
2 − 3|r|

h

)5
+ 15

(
1 − 3|r|

h

)5
0 ≤ |r| < 1

3h,(
3 − 3|r|

h

)5
− 6

(
2 − 3|r|

h

)5
1
3h ≤ |r| < 2

3h,(
3 − 3|r|

h

)5
2
3h ≤ |r| < h,

0 |r| > h,

(13)

where αk = 81/(359π ) is the normalization constant.
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Next, � is discretized with N points (that are usually re-
ferred to as “particles”) with positions rj (j = 1, . . . , N), and
the integral in Eq. (10) is approximated as a sum to obtain the
discrete approximation 〈〈f (r)〉〉 of f (r)

〈〈f (r)〉〉 =
N∑

j=1

fjW (|r − rj |, h)
Vj

=
N∑

j=1

1

nj

fjW (|r − rj |, h), (14)

where f (rj ) = fj , 
Vj = m
j

ρ
j

is the volume associated with

particle j, mj is the prescribed mass of particle j, ρ j is the

mass density of the fluid at position rj , and nj = ρ
j

m
j

is the

number density. Equation (14) computes spatial derivatives
of 〈〈f (r)〉〉 exactly as

∇〈〈f (r)〉〉 =
N∑

j=1

fj

nj

∇W (|r − rj |, h), (15)

where ∇W (|r − rj |, h) can be found analytically.
If the particles are uniformly distributed (e.g., located on

a regular lattice with the lattice size 
), then the particle num-
ber density can be found exactly as nj = 
−d, where d is the
number of spatial dimensions. In the Lagrangian SPH frame-
work, the particles are advected with the fluid velocity and
become disordered. For a non-uniform particle distribution,
the particle number density can be approximately found from
Eq. (14) with fi = ni as

〈〈ni〉〉 =
N∑

j=1

W (|r − rj |, h). (16)

Alternatively, ni = ρ i/mi can be found from the continuity
equation. To simplify the notation, we will drop double brack-
ets in the following derivations.

Using Eqs. (14) and (15), an SPH discretization of the
LLNS Eqs. (1) and (2) can be obtained as10, 24, 25

D(mivi)

Dt
= Fi , (17)

Fi = −
N∑

j=1

(
Pj

n2
j

+ Pi

n2
i

)
rij

rij

dW (rij , h)

drij

+
N∑

j=1

5(μi + μj )

ninj

(vij · rij )

r2
ij

rij

rij

dW (rij , h)

drij

+ mi g

+
N∑

j=1

(
sj

n2
j

+ si

n2
i

)
· rij

rij

dW (rij , h)

drij

. (18)

Following Tartakovsky and Meakin23 and Zhu and Fox,26

a numerical discretization of the convection-diffusion equa-

tion is obtained as
D(miCi)

Dt

=
N∑

j=1

(
DF

i mini + DF
j mjnj

)
(Ci − Cj )

ninj

(
1

rij

dW (rij , h)

drij

)

+
N∑

j=1

(
J j

n2
j

+ J i

n2
i

)
· rij

rij

dW (rij , h)

drij

. (19)

The particle positions are evolved in time according to

d r i

dt
= vi . (20)

Here, vi is the velocity of particle i, t is time, Pi is the fluid
pressure at r i , si is the random stress at r i , rij = |r ij |, r ij

= r i − rj , and vij = vi − vj . For computational efficiency,
we set h to unity and locate particles within the interaction
range using a common link-list approach with an underlying
cubic-lattice, size h = 1.0.

To close the system of SPH equations, we employ the
ideal gas equation of state (EOS) in the form

Pi = c2mini, (21)

where c is the artificial speed of sound, which is chosen
so the desired compressibility of the system is obtained.
Depending on the application, this EOS is often applied to
incompressible systems,27–29 where a choice of c, based on di-
mensionless analysis,27, 30 can yield the quasi-incompressible
approximation of an incompressible fluid.

In general, mi and μi depend on Ci. In SPH, the mass
fraction can be defined as C̃i = ms

i /mi = ms
i /(m0

i + ms
i ),

where mi is the total mass of particle i (mass of the solution
carried by particle i), ms

i is the mass of solute, and m0
i is the

mass of solvent carried by particle i. Then, the dependence of
mi on Ci can be expressed as

mi = m0
i + miC̃i = m0

i + miCmaxCi. (22)

In the following, we assume that m0
i is constant (i.e., does

not change as result of diffusion), C̃ � 1 (dilute solution), the
mass of solute carried by particle i is ms

i = m0
i C̃i , and

mi = m0
i + κCi, (23)

where κ = m0
i Cmax is a constant. Then, Eq. (19) can be lin-

earized as
DCi

Dt
= Gi,

Gi = 1

m0
i

N∑
j=1

(
DF

i mini + DF
j mjnj

)
(Ci − Cj )

ninj

×
(

1

rij

dW (rij , h)

drij

)

+ 1

m0
i

N∑
j=1

(
J j

n2
j

+ J i

n2
i

)
· rij

rij

dW (rij , h)

drij

. (24)

For the sake of simplicity, we neglect the dependence of vis-
cosity on the fluid compositions.
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In SPH, the fluid domain is discretized with fluid particles
with volume 
Vi = 1/ni , and time integration is done with
time step 
t. Therefore, we can write the lm-component of
the random stress tensor at r i as

slm
i =

√
2μkBT δlm


Vi
t
ξ lm
i =

√
2μkBT δlmni


t
ξ lm
i , (25)

where ξ lm
i is a unitless random number from a uniform

or normal distribution with a unit variance. No summation
over repeating indices is assumed in Eq. (25). Similarly, the
l-component of the random flux can be written as

J l
i =

√
2mmDF C(1−C)ρi


Vi
t
ξ̃ l
i =

√
2mmmiD

F C(1−C)n2
i


t
ξ̃ l
i ,

(26)
where ξ̃ l

i is a unitless random number from a uniform or nor-
mal distribution with a unit variance.

To maintain the kinetic energy of the modeled system
independent of resolution (number of particles) and recover
the appropriate scaling behavior of velocity fluctuations with
temperature, we follow the work of Füchslin et al.31 and intro-
duce scaling of the Boltzmann constant, kB. Consider a fluid
system modeled with two different resolutions corresponding
to N∗ and N number of particles, respectively, where N∗ is the
number of particles in the referenced model. We assume that
the Boltzmann constant in the system with N∗ particles is kB
and k̃B in the system with N particles. Equating the total ki-
netic energy of the models with these two resolutions leads to
3
2N∗kBT = 3

2Nk̃BT . Noting that the average particle volume
is inversely proportional to the number of particles, we arrive
at the scaling law

k̃B = V

V ∗ kB, (27)

where V is the average volume of particles in the system with
N particles and V ∗ is the average volume of particles in the
system with N∗ particles. Next, we rewrite Eq. (25) as

slm
i =

√
2μV ∗k̃BT δlmni

Vi
t
ξ lm
i , (28)

where we replace V with Vi = 1/ni , the volume of particle i.
We numerically determined that the correct hydrodynamics is
obtained with V ∗ = 2h3. Therefore, we set the expression for
stress to

slm
i =

√
4h3μT ∗δlmn2

i


t
ξ lm
i , (29)

where T ∗ = k̃BT .
To integrate the SPH Eqs. (17) and (20), an explicit

“velocity-Verlet” algorithm32 with adaptive time stepping is
employed

r i(t + 
t) = r i(t) + 
tvi(t) + 0.5
t2 Fi(t)/mi, (30)

Ci(t + 
t) = Ci(t) + 0.5
t[Gi(t) + Gi(t + 
t)], (31)

mi(t + 
t) = ms
i + κCi(t + 
t), (32)

vi(t + 
t) = mi(t)vi(t) + 0.5
t[Fi(t) + Fi(t + 
t)]

mi(t + 
t)
,

(33)

where Fi(t + 
t) is computed as a function of rj (t + 
t)
and vj (t) (j = 1, . . . , N). At each time step, the solution’s
stability is ensured by satisfying the time step constraints27, 28


t = min

[
ε min

i

h

3|vi |
, ε min

i

√
h

3|ai |
,

ε min
i

ρih
2

9μ
, ε min

i

h2

9D

]
, (34)

where | · | is the magnitude of a vector, 
t = (
tk
+ 
tk − 1)/2 with subscript k denotes the current and previous
time step, ε is a factor (in general, less then one) needed to
ensure proper convergence behavior in the mesoscopic SPH
model, and ai = dvi/dt .

IV. SMOOTHED DISSIPATIVE PARTICLE
HYDRODYNAMICS

In the SDPD method, the stochastic flow equation is
obtained by applying the fluctuation-dissipation theorem di-
rectly to the discretized momentum conservation equation

D(mivi)

Dt
= −

N∑
j=1

(
Pj

n2
j

+ Pi

n2
i

)
rij

rij

dW (rij , h)

drij

+
N∑

j=1

5(μi +μj )

ninj

(vij ·rij )

r2
ij

rij

rij

dW (rij , h)

drij

+mi g

+
N∑

j=1

FS
ij . (35)

Specifically, the fluctuation dissipation theorem is used
to relate the stochastic force FS

ij to the viscous (dissipative)
force

F(visc)
ij = 5(μi + μj )

ninj

(vij · rij )

r2
ij

rij

rij

dW (rij , h)

drij

(36)

as

F
S,l
ij = Bij

rl
ij

|rij |
ζ̃ l
ij√
dt

, (37)

where

Bij =
√

−2̃kBT
5(μi + μj )

ninj

1

rij

dW (rij , h)

drij

(38)

and ζ̃ l
ij = ζ̃ l

j i is a random number from a Gaussian distribu-
tion with zero mean and unity variance and superscript l de-
notes the l-component of the vectors.

V. VALIDATION OF THE SPH METHOD
FOR LLNS EQUATIONS

We study the accuracy of the SPH solution of the LLNS
equations by comparing thermodynamic quantities, such as
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T
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n / 
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FIG. 1. Effect of time step reduction factor ε on the deviation of the system
temperature from the prescribed temperature. T∗ = 0.01, neq = 20, ρ0 = 30,
m = 1.5, and μ = 10. Convergence is reached for ε ≤ 0.25.

kinetic temperature and velocity variance obtained from the
SPH simulations and analytical solutions.

A. Convergence of the SPH solution
of LLNS equations

First, we study the convergence behavior of the SPH so-
lution of stochastic NS equations with respect to time step and
spatial resolution.

Figure 1 shows the dependence of T ∗
kin/T ∗ on the time

step. The normalized kinetic temperature T ∗
kin = k̃BTkin is

computed as

T ∗
kin = 1

3

N∑
i=1

mi

(
δv2

x,i + δv2
y,i + δv2

z,i

)
, (39)

where δvk,i = vk,i − 〈vk〉 (k = x, y, z) are the fluctuations of
k-component of the velocity of particle i around the mean ve-
locity in k-direction, 〈vk〉 = 1

N

∑N
i=1 vk,i . In our simulations,

there are no sources of energy other than random fluctuations,
and the kinetic temperature of the system should theoretically
be equal to the temperature prescribed in Eq. (7), i.e., T ∗

kin/T ∗

should be equal to one. In the simulations shown in Fig. 1, the
model domain has the size Lx = Ly = Lz = 8 h and is peri-
odic in all three directions. The prescribed temperature is T∗

= 0.01, number density neq = 20, mass density of ρeq = neqm0
= 30, mass mi = m0 = 1.5, and viscosity μ = 10. We found
domain size effects to be negligible when Lx = Ly = Lz
≥ 8 h. Convergence is reached at about ε = 0.25 using the
time step criteria in Eq. (34). To keep computation times
lower, we set ε = 0.5 in all of the following simulations,
yielding a difference of about 1% compared to ε = 0.25. We
note that the kinetic temperature is proportional to the velocity
variance. Therefore, Fig. 1 also illustrates that for sufficiently
small 
t, the SPH model correctly predicts the velocity vari-
ance.

Next, we study the effect of resolution (i.e., neq) on the
accuracy of the SPH model. In Fig. 2, we plot T ∗

kin/T ∗ ver-
sus the equilibrium density neq. In the simulations shown

15 20 25 30 35 40
0.94

0.95

0.96

0.97

0.98

0.99

1

n
eq

T
* ki

n / 
T*

T* = 0.001, ρ
0
 = 30

T* = 0.005, ρ
0
 = 30

T* = 0.01, ρ
0
 = 30

T* = 0.05, ρ
0
 = 30

T* = 0.01, ρ
0
 = 60

T* = 0.01, ρ
0
 = 15

FIG. 2. Scaling of kinetic system temperature with changes in resolution and
changes of the mass density ρ0. Here, μ = 10, and ε = 0.5. Convergence is
reached for neq ≥ 20. Gray markers correspond to the kinetic temperatures
for the SDPD implementation of the stochastic stress at neq = 27.

in this figure, the equilibrium mass density is kept constant
(ρeq = 30), and the mass of the particles is set to mi = m0
= ρeq/neq. It is important to note that the speed of sound
should scale with mass as

c ∼
√

kBT

m0

=
√

2h3ρeqT
∗

m2
0

. (40)

To obtain this scaling in the SPH model, we start with the
expression for the pressure variance derived in Ref. 10

〈δP 2〉 = ρeqkBT c2


V
, (41)

where δP is the fluctuation of pressure around the mean pres-
sure. Noting that in the preceding equation 
V = 1/neq , δP
= c2m0δn (δn is the fluctuation of density around neq), and
ρeq = m0neq, we obtain the scaling law for the speed of sound

c = β

√
2h3ρeqT

∗

m2
0

, (42)

where β is the inverse of the coefficient of variation of the
particle number density,

β = neq√
〈δn2〉

. (43)

This results in the EOS

Pi = T ∗2h3neqniβ
2. (44)

We numerically determined that to recover the correct
hydrodynamic behavior, β2 should be approximately equal
to 5.5/2. A significantly smaller β2 results in high compress-
ibility of the fluid and may lead to numerical instability. For
higher β (i.e., for less-compressible fluids), the thermody-
namic variables become dependent on the speed of sound.
Therefore, in all of our simulations, we set β2 = 5.5/2.
Figure 2 shows T ∗

kin/T ∗ for T∗ = 0.001, 0.005, 0.01, 0.05. For
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all considered temperatures, convergence is reached at a num-
ber density of about neq = 20 with the error being less than
2%. Kinetic temperatures obtained from simulations using
an SDPD implementation of the stochastic force are slightly
higher with a maximum error of about 4%.

It follows from Eq. (39) that for all SPH particles having
the same masses mi = m0 = ρ0/neq , the velocity variance σ 2

v

= 1
3

∑N
i=1(δv2

x,i + δv2
y,i + δv2

z,i) should scale as

σ 2
v = T ∗

m0

= neqT
∗

ρ0

, (45)

i.e., for a fluid with a given mass density ρ0, the velocity vari-
ance is inversely proportional to the mass of the SPH particles
or linearly proportional to the resolution neq.

B. Spatial statistics of hydrodynamics variables

Here, we further validate the SPH model for LLNS equa-
tions by comparing statistics of pressure and velocity obtained
from SPH simulations and analytical solutions.

Combining 〈δP 2〉 = m0neqT
∗c2neq and Eq. (40) leads to

the scaling law for the pressure variance

〈δP 2〉 ∼ h3n3
eqT

∗2. (46)

Figure 3 plots 〈δP 2〉 = 1
N

∑N
i=1(Pi − 〈P 〉)2 (where 〈P 〉

= 1
N

∑N
i=1 Pi) as a function of neq and for all prescribed T∗.

It can be seen that 〈δP2〉 correctly scales as n3 (or 1/m3
0)

for the considered range of number densities and tempera-
tures. Figure 4 shows the correlation function of the pres-
sure fluctuations, 〈δP (ri)δP (rj )〉/〈δP 2〉, as a function of rij

= |ri − rj |, obtained from the SPH simulations. The com-
puted pressure correlation function agrees well with the theo-
retical expression12

〈δP (ri)δP (rj )〉
〈δP 2〉 = δij . (47)

15 20 25 30 35 40
0

5

10

15

20

25

30

n
eq

<
δ

P
2 >

 / 
<

δ
P

02 >

T* = 0.001

T* = 0.005

T* = 0.01

T* = 0.05

Theory (Eq. 41)

FIG. 3. Scaling of the pressure variance. 〈δP 2
0 〉 is obtained at neq = 15.
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FIG. 4. Spatial correlation of pressure fluctuations. T∗ = 0.05, neq = 27,
ρ0 = 30.

Due to the “smoothing” nature of the SPH interpolant
(Eq. (14)), the unit peak in the correlation function at rij = 0 is
diffused over the 0 ≤ rij ≤ h region. However, the correlation
function correctly vanishes for rij > h.

The theoretical form of the velocity correlation and cross-
correlation functions is given by Ref. 12 as

〈δvk(ri)δvk(rj )〉 = 〈
δv2

k

〉
δij (48)

and

〈δvk(ri)δvl(rj )〉 = 0 k �= l, (49)

where vk (k = 1, 2, 3) is the k-component of the velocity vec-
tor. Figure 5 shows the spatial cross-correlation function of
the velocity components vx and vy , which behave entirely un-
correlated as expected from Eq. (49). The spatial correlation
function of velocity 〈δvx(ri)δvx(rj )〉 shown in Fig. 6 exhibits
the same behavior as the pressure correlation function, i.e.,
we obtain a correct peak value for rij = 0 and a vanishing
correlation function for rij > h, h. Although not shown here,
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.
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FIG. 6. Spatial correlation of velocity fluctuations.

the correlation function of the y and z components of velocity
have the same correct behavior as shown in Fig. 6.

C. Self-diffusion coefficient

The coefficient of mechanical diffusion (describing the
“diffusion” of the SPH particles), i.e., the self-diffusion coef-
ficient, has a similar scaling behavior as the velocity variance.
For example, for an SDPD model with a slightly different dis-
cretization of the viscous force than used in this work, the
self-diffusion coefficient was obtained as33

D = τkBT

3
= κ

neqh
2k̃BT

μ
, (50)

with κ = 1
12 . For our SPH model, we numerically determined

the value of κ = 0.045.
To validate the scaling of D, we compute the diffusion co-

efficient from SPH simulations over the same range of number
densities and temperatures as in the previous example. The
principal components of the diffusion tensor Dll, l = 1, 2, 3
are obtained from the expression

dIll

dt
= 2Dll, (51)

and the diffusion coefficient is calculated as

D = 1

3

3∑
l=1

Dll. (52)

Here, the first and second moments of the particle displace-
ments in l direction are computed as

Il(t) =
N∑
i

(
xl,i − x0

l,i

)
/N (53)

and

Ill(t) =
N∑
i

Ill − (
xl,i − x0

l,i

)2
/N, (54)

where N is the total number of particles and x0 denotes the
initial particle position.
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FIG. 7. Scaling of the stochastic diffusion coefficient with increasing reso-
lution, where D

ξ
0 is the diffusion coefficient at neq = 15 for each temperature

T∗. Dξ is obtained by linear regression of MSD/
t where MSD >1.0 h.

Figure 7 shows the resulting scaling of the diffusion coef-
ficients with changing resolution, which agrees with Eq. (50).

The same correct linear scaling for the diffusion coeffi-
cient is obtained for the whole temperature range considered
in the simulations (see Fig. 8).

The corresponding Schmidt numbers for all simulations
are shown in Fig. 9.

VI. SPH MODEL FOR HIGHLY DILUTED SOLUTIONS

Here, we examine the enhancement of Fickian diffu-
sion by thermal fluctuations in non-equilibrium systems. In
this section, we study highly diluted solutions, i.e., we as-
sume that the density of the solution (hence, the mass of
the SPH particles) does not depend on the concentration
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FIG. 8. Scaling of the stochastic diffusion coefficient with increasing tem-
perature T∗. Here, T∗ = 0.001, 0.005, 0.01, 0.05 (T ∗

0 = 0.001), and D
ξ
0 cor-

responds to the diffusion coefficient at T∗ = 0.001 for each number density
neq. The diffusion coefficient Dξ is obtained by linear regression of MSD/
t
where MSD >1.0 h.
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(mass fraction) of the solution, C. As shown numerically in
Refs. 13 and 21, the effective diffusion coefficient Deff con-
sists of a deterministic Fickian part DF and a stochastic contri-
bution Dξ : Deff = DF + Dξ . In turn, Dξ is a result of the ran-
dom advection (which is characterized by the self-diffusion
coefficient in Eq. (50)) and the random flux J in the stochastic
advection-diffusion equation.

To study the effect of diffusion enhancement, we sim-
ulate a spherical plume with radius 3 h and an initial uni-
form concentration C0 = 1.0 surrounded by a solution with
zero concentration. A periodic domain with the dimensions Lx
= Ly = Lz = 16 h is used in this study. The SPH particles are
initially placed on a regular grid. The initial number density in
these simulations is neq = 27, the viscosity is μ = 10, and the
mass density of the solvent is ρ0 = 30.0, such that the mass
of solvent carried by particle i is mi = ρ0/neq = 1.11. We run
the simulations with four different temperatures (T∗ = 0.001,
0.005, 0.01, and 0.05), the ratio DF/Dξ ranges from 2 to 10,
and the value of Dξ is estimated from Eq. (50).

The resulting diffusion coefficient is determined from
simulations as Deff = 1

3 (Deff

11 + D
eff

22 + D
eff

33 ), where D
eff

ll

is found as

dIll

dt
= 2D

eff

ll . (55)

The second moments of the plume in l direction are calculated
as

Ill = 1

M

∑
i

(xl,i − Il)
2Cimi, (56)

the first moments are found as

Il = 1

M

∑
i

xl,iCimi, (57)

and the total mass of the solute is

M =
∑

i

Cimi. (58)
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FIG. 10. Accuracy of the diffusion enhancement for different ratios of
DF/Dξ . Diffusion coefficients Dξ + DF are obtained from simulations where
only Fickian diffusion is active or only thermal fluctuations occur and then
are compared to simulations where both are present.

To analyze the accuracy of the SPH solution of the
stochastic and deterministic advection-diffusion equations,
we solve: (1) the deterministic diffusion equation in the ab-
sence of advection, (2) the coupled LLNS and stochastic ad-
vection equation (DF = 0), and (3) the coupled LLNS and
stochastic advection-diffusion equations. In the first case, we
compute the resulting diffusion coefficient and compare it
with the prescribed Fickian diffusion coefficient. In the sec-
ond case, we numerically compute Dξ . Once the determinis-
tic solution is verified and Dξ is evaluated, we compute the
effective diffusion coefficient in the third simulation as

Deff = Dξ + DF (59)

and compare this value with the effective diffusion coefficient
obtained from the SPH solution of the LLNS and stochastic
diffusion equation with the corresponding DF and T∗.

The results of the simulations indicate a very good agree-
ment between Deff obtained from Eq. (59) and the solution
of the full stochastic diffusion equation (see Fig. 10). The rel-
ative errors are between 0.8% and 2.5%.

Figure 11 shows a cross section of the spherical plume
for three different ratios of DF/Dξ = 2, 4, 8 at time t = 2, 20,
40 and a temperature of T∗ = 0.01. Results demonstrate that
for rather high ratios of Dξ /DF—that is, a mesoscopic scale
where the microscopic effects begin to dominate the transport
description—the concentration front is characterized by clear
fluctuations (e.g., upper right panel in Fig. 11). In contrast,
for a lower ratio of Dξ /DF, this effect is less pronounced as
the time evolution of the concentration front is controlled by
the Fickian description of diffusive transport.

VII. SPH SOLUTION OF THE COUPLED LLNS AND
STOCHASTIC DIFFUSION EQUATIONS

Here, we use the coupled stochastic SPH model to study
the effect of gravity on thermally enhanced diffusive trans-
port. Specifically, we analyze perturbations of a front between
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FIG. 11. Cross section of spherical plumes at times t = 2, 20, 40 and at a temperature of T∗ = 0.01. Left picture at each time corresponds to pure Fickian
diffusion, right side to Fickian diffusion enhanced by thermal fluctuations at the given temperature. DF/Dξ = 2, 4, 8 for DF = 0.001, 0.005, 0.01, i.e., the impact
of thermal fluctuations on the concentration field decreases from top to bottom. Cubic domain with edge size 16 h with an initial plume diameter of 6 h.

two miscible fluids due to random stresses and fluxes in the
momentum and advection-diffusion equations. In the coupled
model, we solve the LLNS and stochastic advection-diffusion
equations with the mass of SPH particles (and density of the
solution) depending on C, according to Eq. (23).

We simulate a three-dimensional domain filled with the
solution of a conservative species C. We consider two cases:
(1) initial C is zero in the upper half of the domain and one
in the lower half of the domain, and (2) initial C is one in
the upper half of the domain and zero in the lower half of
the domain. In the first case, the fluid configuration is stable,
i.e., the initially sharp front widens due to molecular diffu-
sion and perturbs due to random fluctuations in fluid velocity
and diffusive fluxes. In this case, we use the SPH model to
study how gravity suppresses perturbations of the front (also
known as giant fluctuations). In the second case, the flow con-
figuration is unstable as the heavy fluid on top tries to replace
the light fluid on the bottom, a phenomenon known as the
Rayleigh-Taylor instability. In this case, we use the stochas-
tic SPH model to study the effect of random stresses and
diffusive fluxes on the development of the Rayleigh-Taylor
instability.

In both study cases, the domain size is Lx = Ly = 16 h
and Lz = 8 h. The upper and lower horizontal boundaries are
assumed to be impermeable, and all of the vertical boundaries
are treated as periodic. To impose no-flow boundary condi-
tions at the bottom of the domain, we set a layer of immobile
particles with the thickness 
Lz = 1 h. Particles in this layer
contribute to the density evolution and forces in the LLNS
equations (i.e., the summations in Eqs. (17) and (16) are over
all fluid and boundary particles). In addition, a bounce-back

condition is used to implement the no-flow boundary con-
dition. The bounce-back boundary condition is implemented
by inverting the velocity vector of particles crossing the im-
permeable boundary (zi < 1 h or zi > 16 h) and returning
these particles into the fluid domain along their “exit” tra-
jectories. The zero-flux boundary condition for the stochas-
tic advection-diffusion equation is imposed by including only
fluid particles in the summations in Eq. (24). The solvent mass
of all particles is set to m0

i = m0 = 1, and mi is computed ac-
cording to Eq. (23). The parameter κ in Eq. (23) is related to
the Atwood number, A, via

A = m(C = 1) − m(C = 0)

m(C = 1) + m(C = 0)
= κ

2m0 + κ
, (60)

where m(C = 1) and m(C = 0) are the masses of particles with
C = 1 and C = 0, respectively.

A. Giant fluctuations

Here, we consider two scenarios: (1) with gravity and
(2) in the absence of gravity. In both scenarios, the solution
with C = 0 (“light fluid”) lies on top of the solution with
C = 1 (“heavy fluid”), the Atwood number is At = 0.83
(κ = 10), and the temperature is set to T∗ = 0.001. In the
first scenario, the system is initially equilibrated, i.e., brought
to hydrostatic condition by solving only the NS equations.
During the equilibration process, C = 0 and 1 are maintained
in the upper and lower part of the domain, respectively. In
the absence of gravity, there is no need to pre-equilibrate the
particle system in the simulations of the second scenario. For

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.76.77.111 On: Wed, 22 Apr 2015 14:19:49



224112-10 Kordilla, Pan, and Tartakovsky J. Chem. Phys. 141, 224112 (2014)

DF = 0.005DF = 0.001DF = 0.0

g
 =

 0
.0

g
 =

 0
.0

05

0 1C

FIG. 12. Cross section of the interface between a heavy fluid and a light fluid on top at time t = 414. Temperature is T∗ = 0.001, κ = 10, μ = 10. (Upper row)
In the presence of gravity with same increase of Fickian diffusion from left to right. (Lower row) Without gravity and increasing Fickian diffusion from left to
right.

each scenario, we conduct three simulations: (1) no Fickian
diffusion, i.e., DF = 0.0; (2) DF = 0.001; and (3) DF = 0.005.

Figure 12 shows the cross sections of the resulting con-
centrations at time t = 414 for each of the six simulations de-
scribed. Subfigures in the top row show the distribution of C
obtained from the simulations in the absence of gravity, where
the presence of giant fluctuations or perturbations of the front
is clear. Subfigures in the bottom row show the distribution of
C obtained from the simulations with gravity. It is evident that
gravity significantly reduces front perturbations for all con-
sidered values of DF, but the effect of gravity becomes less
pronounced with increasing DF. As DF becomes significantly
larger than Dξ (or when T∗ → 0), the stochastic diffusion re-
duces to a deterministic diffusion, and fluctuations completely
disappear.

1. Structure factor

To analyze the diffusive interface, we decompose the
two-dimensional concentration field into its Fourier modes
and wave vectors q to obtain a one-dimensional, radially av-
eraged, static power spectrum S(q).34 We remap the origi-
nal particle data onto a regular grid with LxR × LyR cells
by averaging the particle concentration C(x, y, z) of all par-

ticles in each cell over the depth Lz, excluding the lower
boundaries, to create a two-dimensional concentration field
C(x, y) normal to z (see Fig. 14). Here, R = 1 is chosen
to minimize interpolation errors due to the resampling and
LxR = LyR = Nx = Ny = N. The averaging of the particle
concentrations can be understood as a numerical equivalent
of the common experimental shadowgraphy technique.4, 35

We follow the work of Refs. 4 and 36 and obtain the static
power spectrum from the relative concentration C∗(x, y)
= [C(x, y) − C0(x, y)]/C0(x, y), where C0(x, y) denotes
the initial concentration. To convert the two-dimensional
Fourier transform

F(qx, qy) =
N

x
−1∑

x=0

N
y
−1∑

y=0

C∗(x, y)e−i2π(q
x
x/N

x
+q

y
y/N

y
) (61)

and its complex result F(qx, qy) into a one-dimensional
equivalent, we first construct a two-dimensional power spec-
trum S(qx, qy) = |[F(qx, qy)]|2, where R denotes the real
parts of F and the first and third (second and fourth) quad-
rants of the field F have been swapped to relocate the lowest
spatial frequencies qx and qy to the center.

We then rotate a sampling profile line with endpoints
Pa and Pb about the center coordinate Pa = (N/2 = 0,
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FIG. 13. Concentration fields C(x, y, z) at t = 0 and t = 1800 with gravity (middle) and without gravity (right) at a temperature of T∗ = 0.003.

N/2 = 0) in 1◦ increments, where

Pb = N

2
(1 + u) u = (cos(θ ), sin(θ )), (62)

and compute power spectrum profiles Sθ
ab(q) = q between

Pa and Pb to obtain the one-dimensional radially averaged
power spectrum S(q) = 1

360

∑θ=2π
θ=0 Sab.

In the absence of gravity, the nonequilibrium concentra-
tion fluctuations are known to exhibit a characteristic q−4

decay of the power spectrum.37 However, this can only be
observed over a limited range of wavenumbers due to sev-
eral effects that relax the fluctuations and eliminate the scale-
invariant character. At low wavenumbers, the primary reason
is a finite size of the domain.35 Gravity dampens the fluctu-
ations, leading to a much weaker dependence of the power
spectrum on wavenumber.36

We obtain the power spectrum S(q) from simulations
similar to the ones described in Sec. VII with the domain size
Lx = Ly = 32 h and Lz = 16 h, temperature T∗ = 0.003 (which
corresponds to a Schmidt number of Sc ≈ 1000), and κ

= 10. In these simulations, the light fluid (C = 0) lies on top
of the heavy fluid (C = 1). According to Refs. 36 and 38,
in the absence of gravity, the scale-invariant characteristics of
the power spectrum are independent of the fluid configuration
and concentration gradient and scale as

S(q)/S∞ = (q4 + Bq2 + �4)−1. (63)

Here, B = �tanh (�/2)[2�tanh (�/2) − 4], and � is a
fitting constant. To normalize the data, the asymptotic value of
S∞ = limq → ∞S(q)q4 is obtained from a fit of the linear part
of S(q)q4, which corresponds to fitting a power law function
S∞q−4 to S(q).

Figure 13(a) shows the initial concentration distribution,
and Figs. 13(b) and 13(c) show the concentration distribu-
tion at time t = 1800 with and without gravity, respectively.
Figure 14 depicts the corresponding remapped two-
dimensional concentration fields C∗(x, y) used to obtain the
power spectra. Figure 15 shows the resulting power spectra
scaled onto the universal curve according to Eq. (63) with �

= 2.33 and the theoretical scaling for bounded and unbounded
conditions. This confirms the scale-invariant nature of the
fluctuation front and the saturation due to finite-size effects
at low wavenumbers. The power spectrum of the interface in
the presence of gravity clearly shows the saturation of the di-

vergence at low wavenumbers. It should be noted, that even
when gravity relaxes the interface fluctuations, the theory
also predicts a q−4 divergence at very high wavenumbers,36

which is only weakly visible in our simulations. It is be-
lieved this is an effect of insufficient resolution, and simula-
tions with neq > 27 may be necessary to properly resolve the
divergence.

B. Rayleigh-Taylor instability

Here, we examine the effect of thermal fluctuations on
the development of the Rayleigh-Taylor instability, an unsta-
ble displacement of a light (C = 0) fluid with a heavy fluid
(C = 1) under the action of gravity. In the considered cases,
the Atwood number is A = 0.6 (κ = 3), gravity is g = 0.002,
viscosity is μ = 10, and the number density is neq = 27. The
domain size is Lx = 16 h, Ly = 8 h, and Lz = 32 h. The no-flow
boundary condition is imposed in the z direction by placing a
layer of boundary particles at the bottom of the domain. Pe-
riodic boundary conditions are imposed in the x and y direc-
tions. To initiate the Rayleigh-Taylor instability, we perturb
the interface according to

z(x) = z0 + cos(πx/Lx)η0, (64)

where z0 = 0.5Lz + 1 with the initial amplitude η0 = 0.5 and
the wavelength λ = 16 h.

5.05.0- C*

5 10 15 20 25 30 5 10 15 20 25 30

FIG. 14. Two-dimensional concentration fields C∗(x, y) with R = n1/3 at
t = 1800 with gravity (left) and without gravity (right).
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FIG. 15. Power spectra obtained from the remapped concentration fields at
t = 1800, including the effect of gravity. Due to resolution limitations, the
simulations with gravity do not show a fully developed q−4 divergence, which
would be expected only for very high wavenumbers. Thus, the value of S∞
is obtained from a fit of S(q)q4 in the same range as for g = 0.0.

This yields a pseudo-two-dimensional setup. To bring the
system to a hydrostatic equilibrium, we solve the LLNS equa-
tions, including thermal fluctuations (no Fickian diffusion),

and constantly reassign the appropriate concentrations above
and below the interface defined by Eq. (64). In the final sim-
ulations, we investigate three cases with the same effective
diffusion coefficient Deff = 0.00036 (Sc ≈ 1000): (1) Dξ

= 0.00012, DF = 0.00024; (2) Dξ = 0, DF = 0.00036; and
(3) Dξ = 0.00012, DF = 0.00024 (SDPD implementation of
the stress tensor, see Eq. (37)) to compare the time evolution
of the diffusive interface.

After Ref. 39, the amplitude of the interface has to satisfy

dη

dt
= ηn(A, ν, k), (65)

where η is the amplitude of the diffusive interface and n is
exponential growth coefficient given by Refs. 39–41

n =
√

A
gk

ψ(a,A) + ν2k4
− (ν + Deff )k2. (66)

Here, ν = (μ1 + μ2)/(ρ1 + ρ2) is the kinematic vis-
cosity, k is the wavenumber of the perturbed interface,
a = (2k

√
Deff t)−1, and ψ = 1 + √

2/πa−1 for a ≥ 1. Con-
sequently, the time-dependent solution is

η(t) = η0 exp

(
t

[√
A

gk

ψ(a,A)
+ k4ν − k2ν − Deff k2

])
.

(67)
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FIG. 16. Rayleigh-Taylor instability at a Schmidt number of Sc ≈ 1000 (Deff = 0.00036), At = 0.6 (κ = 3), gravity g = 0.002, viscosity μ = 10, and number
density neq = 27. Domain size is Lx = 16 h, Ly = 8 h, and Lz = 32 h. (Upper row) Only Fickian diffusion with DF = 0.00036. (Lower row) DF = 0.00024 and

Dξ = 0.00012, T∗ = 0.002.
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FIG. 17. (Left) Simulations of the Rayleigh-Taylor instability with same effective diffusion Deff = 0.00036 at Schmidt number Sc ≈ 1000 and g = 0.002 and
the corresponding simulations using the SDPD implementation. The solution of Refs. 43 and 39 have been derived for early times. In contrast, the analytical
solution of Ref. 47 is valid for late times and employs the αq calibration parameter, which has been reported by various laboratory and numerical experiments
to exist in a range between 0.01 and 0.0853 (here aq = 0.035). (Right) Same simulations plotted on linear scale.

A simpler form neglecting the effect of viscosity and dif-
fusion is given as42–44

η(t) = η0 exp
(
t
√

Agk
)
. (68)

It should be noted that Eqs. (67) and (68) are only valid
at early times and/or small η because these equations have
been derived from the linearized hydrodynamic equations.45

At later times (when η ≈ λ/2π46), departure from the expo-
nential time dependence to a more complex quadratic time
dependence47, 48

η(t) = αqAgt2 (69)

and finally to a linear evolution of the diffusive front has been
observed.49–52

Figure 16 shows the resulting evolution of the unstable
front, and Fig. 17 displays the corresponding interface am-
plitude for both the stochastic and deterministic cases. Note
that the interface position at each time step has been approx-
imated by averaging the lowest particle position that satisfies
(0.5 − C) ≤ 0 and Lx/2 − 0.5 h > x < Lx/2 + 0.5 h be-
tween 0 and Ly with 
y = 0.25 h. In general, both solutions
agree well with the analytical solutions of Refs. 43 and 39 for
early times (t � 300) and with the late time behavior given by
Ref. 47 (t � 300), where aq = 0.035. This is in agreement
with the wide range of aq values that have been reported in
literature53 and are between 0.01 and 0.08. Figure 17 (right
panel) shows that the front in the stochastic simulation propa-
gates faster, especially at late times. The rate of the front per-
turbation growth is proportional to the concentration gradient.
The coefficient of Fickian diffusion is smaller in the stochas-
tic model (DF < Deff ) than in the deterministic model (DF

= Deff ), and as a result, the concentration gradients across
the interface are higher in the stochastic simulation than in the
deterministic simulation, which can be seen in Fig. 16. There-
fore, the front perturbation grows faster in the stochastic sim-
ulation than in the deterministic simulation. Simulations using
the SDPD implementation display a slightly slower develop-
ment of the front growth at late times compared to the LLNS-

SPH simulations. This is most likely caused by the difference
in kinetic temperatures (about 4%, see Fig. 2) as development
of vortices rolled up along the tail is favored, leading to higher
drag forces on the perturbation front at late times.

VIII. CONCLUSION

We presented a novel, SPH-based method for solving
coupled LLNS and stochastic advection-diffusion equations.
It is shown that the resulting stochastic SPH model produces a
correct scaling behavior of thermodynamic quantities, such as
velocity variance and self-diffusion coefficient, and the right
spatial correlation of pressure and velocities. We used the
SPH model to investigate the effect of thermal fluctuations on
diffusive mixing. First, we simulated diffusion of a plume and
demonstrated the accuracy of the SPH model with an error
of less than 2%. Then, the role of thermal fluctuations on the
evolution of a diffusive interface between a light fluid lying
on top of a heavy fluid has been demonstrated. In agreement
with recent laboratory experiments and theoretical considera-
tions, we demonstrated that in the absence of gravity, the SPH
model recovers the characteristic q−4 divergence of the inter-
face power spectrum and its scale-invariant nature. Also in
agreement with previous studies, our results show that gravity
reduces perturbations of the miscible front. Finally, we used
the stochastic SPH model to study the effect of thermal fluctu-
ations on the development of the Rayleigh-Taylor instability.
We found that random thermal fluctuations slightly acceler-
ate the development of the instability. In the stochastic SPH
model, mixing of two miscible fluids results from mechani-
cal mixing of two fluids due to random advection and diffu-
sive mixing. In the standard deterministic description (based
on the NS and advection-diffusion equations), the mixing is
treated as an effective diffusion process. Therefore, the de-
terministic model produces smaller concentration gradients
across the front separating two miscible fluids, which slows
the development of the Rayleigh-Taylor instability. The evo-
lution of the miscible front, obtained from the deterministic
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and stochastic models, agrees well with the analytical solu-
tions, which demonstrated the SPH model’s accuracy.

ACKNOWLEDGMENTS

This work was partially supported by the DAAD (Ger-
man Academic Exchange Service) providing J. Kordilla with
an international research scholarship at Pacific Northwest Na-
tional Laboratory (PNNL), USA. A. M. Tartakovsky and W.
Pan were supported by the Applied Mathematics Program
within the U.S. Department of Energy (DOE) Office of Ad-
vanced Scientific Computing Research (ASCR) and PNNL. A
portion of this work was made possible by the CM4: Collab-
oratory on Mathematics for Mesoscopic Modeling of Materi-
als. PNNL is operated by Battelle for the DOE under Contract
DE-AC05-76RL01830.

1E. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge Univer-
sity Press, 1997).

2J. Bear, Dynamics of Fluids in Porous Media (Courier Dover Publications,
1972).

3A. Fick, Ann. Phys. 170, 59 (1855).
4D. Brogioli, A. Vailati, and M. Giglio, J. Phys.: Condens. Matter 12, A39
(2000).

5A. Vailati and M. Giglio, Nature (London) 390, 4 (1997).
6F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, Phys.
Rev. E 76, 041112 (2007).

7A. Einstein, Ann. Phys. 322, 549 (1905).
8M. von Smoluchowski, Ann. Phys. 326, 756 (1906).
9H. Callen and T. Welton, Phys. Rev. 83, 34 (1951).

10L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical
Physics Vol. 6 (Butterworth-Heinemann, 1987).

11M. Serrano and P. Español, Phys. Rev. E 64, 046115 (2001).
12J. B. Bell, A. Garcia, and S. A. Williams, Phys. Rev. E 76, 016708 (2007).
13A. Donev, J. B. Bell, A. de la Fuente, and A. Garcia, Phys. Rev. Lett. 106,

204501 (2011).
14A. Donev and E. Vanden-Eijnden, Commun. Appl. Math. Comput. Sci. 5,

149 (2010).
15A. Ladd, Phys. Rev. Lett. 70, 1339 (1993).
16P. Español, M. Serrano, and H. Öttinger, Phys. Rev. Lett. 83, 4542 (1999).
17P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003).

18M. Grmela and H. Öttinger, Phys. Rev. E 56, 6620 (1997).
19H. Öttinger and M. Grmela, Phys. Rev. E 56, 6633 (1997).
20M. Serrano, G. Fabritiis, P. Español, E. Flekkøy, and P. Coveney, J. Phys.

A 35, 1605 (2002).
21A. Donev, J. B. Bell, A. de la Fuente, and A. L. Garcia, J. Stat. Mech.:

Theory Exp. 2011, P06014.
22J. J. Monaghan, SIAM J. Sci. Comput. 3, 422 (1982).
23A. Tartakovsky and P. Meakin, J. Comput. Phys. 207, 610 (2005).
24R. A. Gingold and J. J. Monaghan, J. Comput. Phys. 46, 429 (1982).
25J. J. Monaghan, Rep. Prog. Phys. 68, 1703 (2005).
26Y. I. Zhu and P. J. Fox, J. Comput. Phys. 182, 622 (2002).
27J. P. Morris, J. Comput. Phys. 136, 214 (1997).
28A. Tartakovsky and P. Meakin, Phys. Rev. E 72, 026301 (2005).
29J. Kordilla, A. Tartakovsky, and T. Geyer, Adv. Water Resour. 59, 1 (2013).
30J. J. Monaghan, Annu. Rev. Astron. Astrophys. 68, 543 (1992).
31R. M. Füchslin, H. Fellermann, A. Eriksson, and H.-J. Ziock, J. Chem.

Phys. 130, 214102 (2009).
32M. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon

Press, Oxford, 1989), p. 404.
33S. Litvinov, M. Ellero, X. Hu, and N. A. Adams, J. Chem. Phys. 130,

021101 (2009).
34C. Redies, J. Hasenstein, and J. Denzler, Spatial Vis. 21, 137 (2007).
35A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, G. Nikolaenko, C. J. Takacs,

D. S. Cannell, W. V. Meyer, and A. E. Smart, Appl. Opt. 45, 2155 (2006).
36A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M.

Giglio, Nat. Commun. 2, 290 (2011).
37T. Kirkpatrick, E. Cohen, and J. Dorfman, Phys. Rev. A 26, 995 (1982).
38J. M. Ortiz de Zárate, F. Peluso, and J. V. Sengers, Eur. Phys. J. E 15, 319

(2004).
39R. E. Duff, F. H. Harlow, and C. W. Hirt, Phys. Fluids 5, 417 (1962).
40R. Bellman and R. Pennington, Q. Appl. Math. 12, 151 (1953).
41R. Hide, Proc. R. Soc. London, Ser. A 233, 376 (1955).
42Lord Rayleigh, Proc. London Math. Soc. 14, 170 (1883).
43S. Chandrasekhar, Math. Proc. Cambridge Philos. Soc. 51, 162 (1955).
44G. Taylor, Proc. R. Soc. London, Ser. A 201, 192 (1950).
45P. Vandervoort, Astrophys. J. 134, 699 (1961).
46 N. N. Anuchina, Yu. A. Kucherenko, V. E. Neuvazhaev, V. N. Ogibina, L.

I. Shibarshov, and V. G. Yakovlev, Fluid Dyn. 13, 916 (1979).
47D. L. Youngs, Physica D 12, 32 (1984).
48K. Read, Physica D 12, 45 (1984).
49D. Layzer, Astrophys. J. 122, 1 (1955).
50P. Garabedian, Proc. R. Soc. London, Ser. A 241, 423 (1957).
51G. Birkhoff and D. Carter, Indiana Univ. Math. J. 6, 769 (1957).
52M.-A. Lafay, B. Le Creurer, and S. Gauthier, Europhys. Lett. 79, 64002

(2007).
53J. Glimm, J. Grove, X. Li, W. Oh, and D. Sharp, J. Comput. Phys. 169, 652

(2001).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.76.77.111 On: Wed, 22 Apr 2015 14:19:49

http://dx.doi.org/10.1002/andp.18551700105
http://dx.doi.org/10.1088/0953-8984/12/8A/305
http://dx.doi.org/10.1038/36163
http://dx.doi.org/10.1103/PhysRevE.76.041112
http://dx.doi.org/10.1103/PhysRevE.76.041112
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19063261405
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1103/PhysRevE.64.046115
http://dx.doi.org/10.1103/PhysRevE.76.016708
http://dx.doi.org/10.1103/PhysRevLett.106.204501
http://dx.doi.org/10.2140/camcos.2010.5.149
http://dx.doi.org/10.1103/PhysRevLett.70.1339
http://dx.doi.org/10.1103/PhysRevLett.83.4542
http://dx.doi.org/10.1103/PhysRevE.67.026705
http://dx.doi.org/10.1103/PhysRevE.56.6620
http://dx.doi.org/10.1103/PhysRevE.56.6633
http://dx.doi.org/10.1088/0305-4470/35/7/310
http://dx.doi.org/10.1088/0305-4470/35/7/310
http://dx.doi.org/10.1088/1742-5468/2011/06/P06014
http://dx.doi.org/10.1088/1742-5468/2011/06/P06014
http://dx.doi.org/10.1137/0903027
http://dx.doi.org/10.1016/j.jcp.2005.02.001
http://dx.doi.org/10.1016/0021-9991(82)90025-0
http://dx.doi.org/10.1088/0034-4885/68/8/R01
http://dx.doi.org/10.1006/jcph.2002.7189
http://dx.doi.org/10.1006/jcph.1997.5776
http://dx.doi.org/10.1103/PhysRevE.72.026301
http://dx.doi.org/10.1016/j.advwatres.2013.04.009
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
http://dx.doi.org/10.1063/1.3143976
http://dx.doi.org/10.1063/1.3143976
http://dx.doi.org/10.1063/1.3058437
http://dx.doi.org/10.1163/156856807782753921
http://dx.doi.org/10.1364/AO.45.002155
http://dx.doi.org/10.1038/ncomms1290
http://dx.doi.org/10.1103/PhysRevA.26.995
http://dx.doi.org/10.1140/epje/i2004-10074-4
http://dx.doi.org/10.1063/1.1706634
http://dx.doi.org/10.1098/rspa.1955.0273
http://dx.doi.org/10.1112/plms/s1-14.1.170
http://dx.doi.org/10.1017/S0305004100030048
http://dx.doi.org/10.1098/rspa.1950.0052
http://dx.doi.org/10.1086/147196
http://dx.doi.org/10.1007/BF01050969
http://dx.doi.org/10.1016/0167-2789(84)90512-8
http://dx.doi.org/10.1016/0167-2789(84)90513-X
http://dx.doi.org/10.1086/146048
http://dx.doi.org/10.1098/rspa.1957.0137
http://dx.doi.org/10.1512/iumj.1957.6.56042
http://dx.doi.org/10.1209/0295-5075/79/64002
http://dx.doi.org/10.1006/jcph.2000.6590

