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Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow
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We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient
droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without
discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with
pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic
contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate
static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact
angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static
contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On
the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending
on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on
roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination.
We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of
the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities.
Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to
the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction,
the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid
contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond
and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.
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I. INTRODUCTION

Surface roughness and fluid-surface interactions control
wettability and flow dynamics of droplets. Droplets are likely
to spread on hydrophilic smooth surfaces to form a thin
film or puddle and commonly form a spherical shape on
fully hydrophobic smooth surfaces when droplet sizes are
comparable to the capillary length of water [1]. A surface is
considered hydrophobic if the static contact angle is larger than
90◦ and hydrophilic, otherwise. On smooth surfaces, the static
contact angle θ0 only depends on the fluid-solid molecular
interactions. Therefore, in this paper, we will refer to this
as the microscopic contact angle θ0. On rough surfaces, the
static contact angle, which we call the effective contact angle
θeff, depends on both the fluid-solid molecular interactions
(and θ0) and surface roughness. Various authors have exper-
imentally investigated the dependence of the contact angles
on the chemical composition and roughness of solid surfaces
[e.g., 2–4]. Recently, molecular dynamics (MD) simulations
have been used to study the effect of nanoscale roughness
on static contact angles of droplets [5,6]. It was shown that
smooth hydrophilic surfaces can become less hydrophilic
if certain types of roughness are added. In some cases, a
superhydrophobic rough surface with a contact angle of 180◦
can be created.

Droplet flow on rough surfaces has been investigated ex-
perimentally and numerically using MD simulations by Huang
et al. [7], Byun et al. [8], Zhang et al. [9], and Stamatopoulos
et al. [10]. For example, Zhang et al. [9] experimentally
studied the droplet velocities on grooved surfaces with various
inclination angles and different orientations of grooves relative
to the flow direction. Results indicated that droplets experience
less resistance to flow if grooves are oriented parallel to the

flow direction, and they move significantly faster. On the other
hand, water droplets barely moved when the grooves were
oriented perpendicular to the flow direction.

In this work, we investigate contact angle dynamics of
sessile and transient droplets on rough hydrophobic and hy-
drophilic surfaces using the pairwise force smoothed particle
hydrodynamics (PF-SPH) method implemented in LAMMPS

[11], a massively parallel library for particle simulations.
In PF-SPH, the boundary conditions at the fluid-fluid and
fluid-fluid-solid interfaces are modeled by pairwise forces
[12]. In contrast to other numerical methods for multiphase
flows [e.g., 7], PF-SPH allows for discretizing only the liquid
phase in liquid-gas flows, which significantly reduces the
computational cost for modeling water droplet flows where
most of the domain usually is occupied by air.

A validation of the PF-SPH method for fluid-fluid systems
(where both fluids are explicitly modeled) for modeling
fluid-fluid and fluid-fluid-solid interfaces, including dynamic
contact angles, with respect to Young-Laplace [13] and Tanner
[14] laws was presented in Tartakovsky and Panchenko [12].
Similarly, here, we demonstrate the accuracy of PF-SPH for
liquid-gas systems where only the liquid phase is explicitly
modeled. Furthermore, the model is shown to reproduce the
Cassie-to-Wenzel transition based on critical capillary pressure
and internal droplet pressure. Next, we use the PF-SPH model
to simulate highly intermittent, gravity-driven free-surface
flows for a diverse range of wetting conditions on time
and length scales that are inaccessible to MD. We also use
the PF-SPH method to study the effect of roughness on
the effective static contact angle. We construct four surface
geometries to investigate the changes of static contact angles
of sessile droplets: rectangular, dual-rectangular, sinusoidal,
and dual-sinusoidal surfaces.
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Similar to the experimental work of Zhang et al. [9],
we study the effect of surface roughness orientation relative
to the flow direction on the motion of water droplets and
observe good qualitative agreement with our simulations.
Grooves oriented parallel to the flow direction result in higher
droplet velocities, while they impede movement when oriented
perpendicular to the flow direction. We cast our results in
a dimensionless form to investigate the relationship between
Bond (Bo) and capillary (Ca) numbers for different surface
inclination angles and types of roughness. Simulations show
that linear scaling relationships between Bo and Ca numbers
for droplet flow on smooth surfaces [15] also hold on rough
surfaces.

II. GOVERNING EQUATIONS AND PF-SPH METHOD

We consider flow of water and air phases, where the air
phase is continuous. Under this condition, it is common to
disregard the effect of the air phase on water flow and model
the latter by a combination of the continuity equation,

dρ

dt
= −ρ∇ · v, (1)

and the momentum conservation equation,

dv
dt

= − 1

ρ
∇P + μ

ρ
∇2v + g, (2)

subject to the free-surface boundary condition at the fluid-air
interface,

−P n = −τ · n + κσn, (3)

and a no-slip boundary condition at the fluid-solid boundary.
Here, τ = [μ(∇v + ∇vT)] is the viscous stress tensor, v
the velocity, P is the pressure, μ is the viscosity, g is the
gravitational acceleration, κ is the interface curvature, σ is
the surface tension, and the normal vector n points away
from the nonwetting phase. In addition, the microscopic
contact angle needs to be specified at the water-air-solid
contact line.

In this work, we use the weakly compressible PF-SPH
method [16,17] to solve Eqs. (1)–(3). SPH is a mesh-free
Lagrangian method where fluids are discretized with a set of
N points, commonly referred to as particles. Each particle is
defined by its position ri , mass mi , density ρi , and velocity
vi , i = 1, . . . ,N . SPH is based on the approximation of a
continuous function and its derivative:

f (r) =
N∑
j

mj

ρj

f (rj )W (|r − rj |,h), (4)

∇f (r) =
N∑
j

mj

ρj

f (rj )∇W (|r − rj |,h), (5)

where the kernel W (|r − rj |,h) satisfies the normalization
condition, ∫

W (|r − rj |,h)dr = 1, (6)

and has compact support h. In the limit of h → 0, W

approaches the Dirac delta function δ(|r − rj |):
lim
h→0

W (|r − rj |,h) = δ(|r − rj |). (7)

A number of functional forms of W have been used in
the literature. Here, we use W in the form of a so-called
“Wendland” kernel [18]:

W = αk

{(
1 − |r|

h

)3
if 0 � |r| < h

0 if |r| � h,
(8)

where αk = 168/16πh3.
The PF-SPH discretization of Eqs. (2) and (3) is

dvi

dt
= −

N∑
j=1

mj

(
Pj

ρ2
j

+ Pi

ρ2
i

)
rij

rij

· dW (rij ,h)

drij

+ 2μ

N∑
j=1

mj

vij

ρiρj rij

· dW (rij ,h)

drij

+ g + 1

mi

N∑
j=1

Fij .

(9)

The particle positions are advanced according to

dri

dt
= vi . (10)

The particle-particle interaction force Fij in Eq. (9) is used
to generate surface tension and the fluid wetting behavior.
Here, we use Fij in the form

Fij = sij

[
Aij W̃

(
rij ,

h

2

)
rij

rij

− W̃ (rij ,h)
rij

rij

]
, (11)

where W̃ is a cubic spline function:

W̃ (rij ,h) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 3
2

( r
h

)2 + 3
4

( r
h

)3
if 0 � r

h
< 0.5

1
4

(
2 − r

h

)3
if 0.5 � r

h
< 1

0 if r
h

� 1

(12)

and sij and Aij are parameters determining the magnitude of
surface tension and the microscopic static contact angle. To
impose the no-slip boundary condition away from the fluid-
fluid-solid contact line and the contact angle at the contact
line, the solid phase is discretized with a set of static “solid”
particles, and summation in Eq. (9) is performed over both
fluid and solid particles. The parameter sij is set to sff when
particle j is a fluid particle and ssf when particle j is a solid
particle [particle i in Eq. (9) is always a fluid particle]. For a
liquid to wet a surface, sff should be set greater than ssf and
vice versa. In this work, the parameter Aij is set to Aff = 8 for
interactions between two fluid particles and to Asf = 24 for
interactions between fluid and solid particles.

The density is obtained from kernel summation as

ρi =
N∑

j=1

mjW (rij ,h). (13)

To evaluate pressure at each time step, we employ an
equation of state (EOS) following Batchelor [19] and Mon-
aghan [20]:

P = P0

{( ρ

ρ0

)γ

− 1
}
, (14)
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where

P0 = c2ρ0

γ
. (15)

Here, ρ0 is the reference water density and γ = 3 and the speed
of sound c are chosen so that the relative density fluctuation
|δρ|/ρ is small enough (less than 3%) to approximate an
incompressible fluid [21]. To integrate Eq. (9), we employ
a modified velocity Verlet time stepping scheme:

(1) vi

(
t + 1

2�t
) = vi + 1

2 ai(t); (16a)

(2) v̄i(t + �t) = vi(t) + �tai ; (16b)

(3) ri(t + �t) = ri(t) + �tvi

(
t + 1

2�t
)
; (16c)

(4) calculation of ai(t + �t)using extrapolated velocity v̄i ;

(5) vi(t + �t) = vi

(
t + 1

2�t
) + 1

2 ai(t + �t), (16d)

where ai = fi
mi

is the acceleration.
Time step constraints are given by Tartakovsky and

Meakin [16]:

�t � 0.25h/3c, (17a)

�t � 0.25 min(h/3|ai |)1/2, (17b)

�t � min(ρih
2/9μi), (17c)

where |ai | is the magnitude of acceleration ai .
In our simulations, we set the density and viscosity of water

to ρ0 = 1000 kg/m3 and μ = 0.001 296 Pa s, respectively.
Initially, the SPH particles are placed on a uniform cubic
lattice with the lattice size 0.5 × 10−4 m (unless mentioned
otherwise), which results in a fluid particle mass of m0 =
1.25 × 10−10 kg. The mass of solid particles is set to that
of the fluid particle. The smoothing length is set to h =
1.71 × 10−4 m, the speed of sound to c = 4.5 ms−1, and the
gravitational acceleration to g = 9.81 m/s2.

III. MODEL PARAMETRIZATION AND VERIFICATION

A. Surface tension

The parameter sff is calibrated with respect to the surface
tension of water by simulating a droplet and using the Young-
Laplace law to relate the difference of pressure inside and
outside of the bubble, �P and its radius, Req, to the surface
tension σ :

σ = Req

2
�P. (18)

Because the pressure outside of the bubble is zero, �P is equal
to the pressure inside the bubble. It should be noted that the
total pressure in PF-SPH is a sum of the pressure prescribed
via the EOS and generated by Fij . As in any particle system,
the total pressure generated by SPH particles can be calculated
from the virial formula [16,17,22,23]:

PT = 1

2dVr

∑
i

∑
j

rij fij = 1

8r3
v

∑
i

∑
j

rij fij , (19)

where d = 3 for a three-dimensional system and
∑

j fij =
midvi/dt . The double summation is performed over all
particles within the distance rv from the droplet center, where
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FIG. 1. Pressure for various droplet sizes.

rv = Req − h, to exclude the boundary deficiency effect. We
obtain the surface tension of water with sff = 3.5 × 10−6.
Six liquid droplets with radii ranging from 0.5 to 1 mm are
simulated in the absence of gravity with sff = 3.5 × 10−6 and
the other parameters as described. Figure 1 shows the fluid
pressure PT in the center of the equilibrated liquid droplet
versus 1/Req. The surface tension, found as half of the slope
of the straight line fitted through the simulation results, is
σ = 73.14 mN m−1 (the water surface tension is 72 mN m−1

at 25 C).

B. Static contact angles on smooth surface

To measure static contact angles, we simulate droplets that
are slowly brought into contact with the flat surface. Each
droplet has a volume of V = 2.14 mm3. After droplets reach
equilibrium and remain static, we select fluid particles at the
intersection of the droplet surface with the xy and zy planes
and fit circles with radius Rx in the xy plane and Rz in the
zy plane as shown in Fig. 2. The contact angles θx

0 in the x

direction and θz
0 in the z direction can be found as

θ
x,z
0 = 90 ± arcsin

(
lx,z

Rx,z

)
, (20)

where lx,z is a distance between circle center and solid surface.
In Eq. (20), the addition is carried out for static contact angles
larger than 90◦ and subtraction otherwise. The static contact
angle θ0 is equal to the arithmetic mean of θx

0 and θz
0 .

For the parameter set described above, the (microscopic)
static contact angle θ0 on a smooth surface depends on the
interaction forces ssf between solid and fluid particles (Table I).
Figure 3 shows that θ0 decreases with increasing ssf. All static
contact angles θ0 are measured with a standard error SEθ̄0

≈
±0.2◦, which is computed as

SEθ̄0
= s√

n
, (21)

where s is the standard deviation of the mean θ̄0 of n = 5
droplets. Droplets are brought into contact with the solid
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FIG. 2. Static contact angle measurements. Here, only the droplet
cross section in the xy plane is shown.

surface from five different distances in order to randomize
the dynamic contact line movement until a static contact angle
is achieved.

To investigate the pinning effect due to the discrete nature
of the solid surface we compute the difference ε0 in contact
angles in the x and z directions:

ε0 = ∣∣θx
0 − θz

0

∣∣. (22)

The values of ε0 are reported in Table I. In these simulations
ε0 is less than 1◦, and we assume that pinning effects are
negligible for the chosen resolution.

To validate our model, we simulate droplet spreading
on a horizontal surface [Fig. 4 (inset)] and compare the
time-dependent height of the droplet, H , with the Tanner
law: H ∼ t−2n/3, where n = 0.3 in three spatial dimensions
[14]. The simulation is initialized by placing a droplet with
an initial radius R0 = 1.2 mm on the horizontal surface. After
equilibration of the droplet on the solid surface in the presence
of gravity, we prescribe a solid-fluid interaction force of
ssf = 3 × 10−6 and measure the height changes of the droplet
over time.

Figure 4 shows H as a function of time obtained from the
simulation with the exponent n = 0.274, which is close to the
theoretical value of n = 0.3.

C. Dynamic contact angles on smooth surface

Here we demonstrate that the PF-SPH model predicts
dynamic contact angles in accordance with the theoretical
Cox-Voinov relationship [13,24]. The dynamic contact angle

TABLE I. Static contact angles of droplets for different solid-fluid
interaction strengths ssf.

ssf 0 1 × 10−6 1.3 × 10−6 1.8 × 10−6 2.2 × 10−6 2.8 × 10−6

θx
0 122.4◦ 100.8◦ 85.2◦ 81.3◦ 77.2◦ 0.1◦

θz
0 122.9◦ 101.2◦ 84.3◦ 81.7◦ 77.7◦ 72.2◦

θ0 122.7◦ 100.9◦ 84.7◦ 81.5◦ 77.5◦ 72.8◦

ε0 0.5◦ 0.4◦ 0.9◦ 0.4◦ 0.5◦ 0.8◦

as a function of the contact line velocity is measured by
simulating a plate withdrawal from a pool of liquid. According
to the Cox-Voinov relationship, the receding contact angle
scales with the capillary number, Ca, as

θ3
0 − θ3

r ∼ Ca, (23)

where Ca is defined as

Ca = μ
v

σ
, (24)

and v is the velocity of the moving plate.
The simulation setup is shown in Fig. 5 (inset). The receding

angle is computed as the angle formed by a circle, fitted to
the interface, and the solid boundary. From Fig. 5 we find
that θ3

0 − θ3
r ∼ Caα with α = 0.9469, which is close to the

theoretical value α = 1.
Physically, θ0 depends on the chemical composition of

fluids and the solid surface, and, numerically (in the PF-SPH
model), θ0 is a function of the interaction parameters ssf and
sff. Therefore, we refer to θ0 as a microscopic static contact
angle. In the following, we study droplet behavior on rough
surfaces obtained by “carving” a flat surface and characterize
macroscopic wetting properties of these rough surfaces in
terms of the effective contact angle formed by a droplet and a
plane fitted to the rough surface.

IV. WENZEL AND CASSIE DROPLETS
ON ROUGH SOLID SURFACES

Depending on θ0 and surface roughness, a droplet on
a rough surface can be in one of the three regimes: the
Wenzel regime [25], the Cassie regime [26], or the mixed
Cassie-Wenzel regime. Figure 6 shows the PF-SPH simula-
tions of a droplet in all three regimes. On “microscopically” hy-
drophilic rough surfaces (i.e., surfaces with θ0 > π/2), Wenzel
drops are formed by the fluid filling surface indentations
[Fig. 6 (middle)]. On microscopically hydrophobic surfaces,
depending on the ratio of roughness to the size and mass of the

ssf = 0
θ0 = 122.7°

ssf = 1.0e-6
θ0 = 100.9°

ssf = 1.3e-6
θ0 = 84.7°

ssf = 1.8e-6
θ0 = 81.5°

ssf = 2.2e-6
θ0 = 77.5°

ssf = 2.8e-6
θ0 = 72.8°

FIG. 3. Static contact angles for different solid-fluid interaction strengths ssf.
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FIG. 4. Model verification with respect to Tanner’s law: height
of the droplet as a function of time. The inset shows the droplet
spreading on a horizontal surface.

droplet, Cassie [Fig. 6 (left)] or Cassie-Wenzel regime [Fig. 6
(right)] droplets can form. In the Cassie regime, a droplet
“rests” on the surface spikes, while a droplet partially filling
the pits and depressions of a rough surface is considered to be
in the Cassie-Wenzel regime. In general, the effective contact
angle θeff, formed by a droplet on a rough surface, differs from
the microscopic static contact angle θ0.

In the following, we simulate droplets in all three regimes
and study the relationship between the roughness geometry,
θ0 (or the parameter ssf), and θeff. We investigate both
hydrophobic surfaces (θ0 > 90◦) and hydrophilic (θ0 < 90◦)
surfaces.
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FIG. 5. Cox-Voinov relationship for receding contact angles. The
inset shows the simulation results of a plate withdrawal from a pool
of liquid (x = 25 mm, y = 10 mm).

FIG. 6. Different states of droplets depending on wetting condi-
tions (left to right): Cassie state, Wenzel state, and Cassie-Wenzel
state.

V. EFFECTIVE CONTACT ANGLES OF DROPLETS ON
ROUGH MICROSCOPICALLY HYDROPHOBIC SURFACES

Microscopically hydrophobic rough surfaces are modeled
by setting ssf = 0, which yields θ0 = 122.7◦. We consider four
types of rough surfaces with rectangular, dual-rectangular,
sinusoidal, and dual-sinusoidal patterns (see Fig. 7).

We model droplets with an initial radius R = 0.8 mm,
which are slowly brought into contact with a rough surface.
After equilibration of a droplet on the rough surface, we
measure the effective contact angle θeff in the x and z directions
as shown in Fig. 2. For Wenzel and Cassie-Wenzel droplets,
which penetrate depressions of the rough surface, we measure
θeff relative to the nominal smooth surface on top of the
blocks, as indicated in Figs. 6 (middle) and 6 (right) by the
solid line. Depending on their geometry, solid surfaces are
discretized with approximately 20 000 boundary particles and
droplets with 17 075 fluid particles. Simulations are run on
eight processors.

A. Rectangular and dual-rectangular surfaces

Figure 7 (first from left) shows the rectangular-patterned
surface. This surface is parametrized by the distance d between
“bars,” the height H , and the width l of the bars. We study three
rectangular-patterned surfaces with different parameters l and
d, and H = 0.2 mm: a fine-roughness surface with small d

and l [Fig. 8(a)], a medium-roughness surface [Fig. 8(b)], and
a coarse-roughness surface with large d and l [Fig. 8(c)].

Figure 7 (second from left) depicts the dual-rectangular
surface. It is constructed of blocks of height H , length l, and the
distance d between the blocks. Figures 8(d)–8(f) show three
types of dual-rectangular surfaces: a fine-roughness surface
[Fig. 8(d)], a medium-roughness surface [Fig. 8(e)], and a
coarse-roughness dual-rectangular surface [Fig. 8(f)].

Figure 8 also shows the equilibrated droplets on
rectangular-patterned surfaces. Table II provides the corre-
sponding effective contact angle values. The effective static
contact angle θx

eff measured in the x direction perpendicular
to the bars increases with decreasing l and/or increasing
d. All droplets on hydrophobic rectangular surfaces are in
a Cassie state. The effective static contact angle θz

eff of a
droplet measured in the z direction parallel to the ripples
varies between 123.3◦ and 125.5◦, which is close to the
corresponding θ0 = 122.7◦.

Due to the isotropic geometry of the dual-rectangular-
patterned surfaces, θx

eff and θz
eff are the same in both directions

[Figs. 8(d)–8(f)]. The largest contact angle θx
eff ≈ θz

eff ≈ 151◦
is measured on a fine dual-rectangular surface [Fig. 8(d)].
In contrast, the droplets on medium- and coarse-roughness
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A

FIG. 7. Surface parameters (four types, from left to right): (1) for rectangular surface—height H and width l of a bar; d—distance between
bars; (2) for dual-rectangular surface—height H and l width of a block; d—distance between blocks; (3) for sinusoidal surface—period T and
magnitude A of a sinusoidal function in the x direction; (4) for dual-sinusoidal surface—period T and magnitude A of a sinusoidal function in
the x and z directions.

surfaces are in the Wenzel state, even though not all small
surface depressions are completely filled with fluid because
of microscale surface hydrophobicity. The effective contact
angles of “Wenzel” droplets are larger than the microscopic
static contact angle, and the microscale hydrophobic rough
surfaces also show macroscale hydrophobic behavior.

B. Sinusoidal and dual-sinusoidal surfaces

Here, we study the contact angles of droplets on sinusoidal
surfaces with longitudinal ripples in the z direction and a
sinusoidal cross section in the x direction [Fig. 7 (third from
left)]. The sinusoidal surfaces are parametrized as

S(x,z) = A

2
cos

(
x

2π

T

)
+ 0.000 15, (25)

and the solid boundary in simulations is constructed by filling
the region y < S(x) with solid particles. The parameters of
this surface are the period of the sinusoidal function T and the
magnitude A in the y direction, which is equal for all types
of sinusoidal surfaces A = 0.2 mm. We employ three types
of rough sinusoidal surfaces: a fine-roughness surface with

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. Static contact angles of droplets on hydrophobic rect-
angular [(a)–(c)] and dual-rectangular [(d)–(f)] surfaces. Surface
parameters are d = 0.2 mm, l = 0.15 mm [(a), (d)]; d = 0.25 mm,
l = 0.2 mm [(b), (e)]; d = 0.25 mm, l = 0.25 mm [(c), (f)]; H =
0.2 mm for all types of surfaces.

T = 0.2 mm [Fig. 9(a)], a medium-roughness surface with
T = 0.25 mm [Fig. 9(b)], and a coarse-roughness sinusoidal
surface with T = 0.3 mm [Fig. 9(c)].

The dual-sinusoidal surface is created as a surface with
sinusoidal cross sections in the x and z directions [Fig. 7
(fourth from left)], described by the equation

S(x,z) = A

2
cos

(
x

2π

T

)
+ A

2
cos

(
z

2π

T

)
+ 0.000 15. (26)

The parameter T is varied to create three surfaces: a fine-
roughness surface with T = 0.2 mm [Fig. 9(d)], a medium-
roughness surface with T = 0.25 mm [Fig. 9(e)], and a
coarse-roughness dual-sinusoidal surface with T = 0.3 mm
[Fig. 9(f)]. The magnitude A is equal to 0.2 mm for all three
surfaces. In the simulations, the region y < S(x,z) is filled
with solid particles.

Figure 9 depicts droplets on the sinusoidal and dual-
sinusoidal surfaces and Table II shows the effective static
contact angles. Here, the droplet on the fine sinusoidal surface
is in the Cassie state, the droplet on the medium sinusoidal
surface is in the Cassie-Wenzel state, and droplets on the coarse
sinusoidal and dual-sinusoidal surfaces are macroscopically

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9. Static contact angles of droplets on hydrophobic si-
nusoidal [(a)–(c)] and dual-sinusoidal [(d)–(f)] surfaces. Surface
parameters are A = 0.2 mm, T = 0.2 mm [(a), (d)]; A = 0.2 mm,
T = 0.25 mm [(b), (e)]; A = 0.2 mm, T = 0.3 mm [(c), (f)].
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TABLE II. Effective static contact angles of droplets on rough hydrophobic and hydrophilic surfaces. fr: fine roughness; mr: medium
roughness; cr: coarse roughness.

Rectangular Dual-rectangular Sinusoidal Dual-sinusoidal

λ 0.0469 0.0781 0.0977 0.0469 0.0781 0.0977 0.0625 0.0781 0.0938 0.0625 0.0781 0.0938
(fr) (mr) (cr) (fr) (mr) (cr) (fr) (mr) (cr) (fr) (mr) (cr)

Hydrophobic surfaces
θx

eff 152.9◦ 142.7◦ 130.3◦ 151.5◦ 135.5◦ 125.9◦ 144.6◦ 128.3◦ 145.3◦ 111.8◦ 121.2◦ 135.7◦

θz
eff 123.3◦ 124.6◦ 125.5◦ 150.6◦ 136.6◦ 128.1◦ 106.7◦ 110.5◦ 118.4◦ 110.5◦ 122.9◦ 135.7◦

εeff 29.6◦ 18.1◦ 4.8◦ 0.9◦ 1.1◦ 2.2◦ 37.9◦ 17.8◦ 26.9◦ 1.3◦ 1.7◦ 0◦

Hydrophilic surfaces
θx

eff 103.7◦ 129.2◦ 122.2◦ 98.1◦ 94.5◦ 96.5◦ 99.8◦ 117.6◦ 123.2◦ 105.4◦ 113.7◦ 95.7◦

θz
eff 80.9◦ 81.1◦ 84.7◦ 95.7◦ 94.5◦ 100.6◦ 74.6◦ 72.9◦ 79.7◦ 103◦ 114.5◦ 96.5◦

εeff 22.8◦ 48.1◦ 37.5◦ 2.4◦ 0◦ 4.1◦ 25.2◦ 44.7◦ 43.5◦ 2.4◦ 1.2◦ 0.8◦

in the Wenzel state. For all considered microscopically
hydrophobic rough surfaces, the effective static contact angle
is greater than 90◦, i.e., these surfaces are macroscopically
hydrophobic.

VI. EFFECTIVE CONTACT ANGLES OF DROPLETS ON
ROUGH MICROSCOPICALLY HYDROPHILIC SURFACES

The microscopic hydrophilic behavior of droplets on a
solid surface is achieved by setting the solid-fluid interaction
strength to ssf = 1.3 × 10−6, which yields θ0 = 84.7◦. The
surface geometries are the same as in the preceding section (see
Fig. 7). We find that Wenzel droplets form on all considered
microscopically hydrophilic surfaces (see Figs. 10 and 11).

Table II lists the resulting effective contact angles. The
effective static contact angle of Wenzel droplets on the dual-
rectangular and dual-sinusoidal microscopically hydrophilic
surfaces are larger than 90◦. This means that the dual-

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. Static contact angles of droplets on hydrophilic rect-
angular [(a)–(c)] and dual-rectangular [(d)–(f)] surfaces. Surface
parameters are d = 0.2 mm, l = 0.15 mm [(a), (d)]; d = 0.25 mm,
l = 0.2 mm [(b), (e)]; d = 0.25 mm, l = 0.25 mm [(c), (f)]; H =
0.2 mm for all types of surfaces.

rectangular and dual-sinusoidal roughnesses considered in this
work make microscopically hydrophilic surfaces macroscopi-
cally hydrophobic. For the rectangular-rough and sinusoidal-
rough surfaces, the effective contact angles in the x direction
are greater than 90◦, but the effective contact angles in the
z direction are smaller than the corresponding microscopic
contact angle. These types of surfaces have mixed effective
wettability, i.e., they are macroscopically hydrophilic in the z

direction and hydrophobic in the x direction.

VII. DIMENSIONLESS ANALYSIS OF EFFECTIVE
STATIC CONTACT ANGLES

The influence of surface geometry on the effective contact
angles of droplets can be described by the (dimensionless)
scaling ratio λ. For rectangular and dual-rectangular surfaces,
the scaling ratio λ is defined as

λ = ld

R2
0

, (27)

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 11. Static contact angles of droplets on hydrophilic si-
nusoidal [(a)–(c)] and dual-sinusoidal [(d)–(f)] surfaces. Surface
parameters are A = 0.2 mm, T = 0.2 mm [(a), (d)]; A = 0.2 mm,
T = 0.25 mm [(b), (e)]; A = 0.2 mm, T = 0.3 mm [(c), (f)].
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FIG. 12. Effective static contact angles θx
eff and θz

eff for scaling ratio λ between 3.5 × 10−3 and 8.5 × 10−3 for hydrophobic rectangular
and dual-rectangular (a), hydrophilic rectangular and dual-rectangular (b), hydrophobic sinusoidal and dual-sinusoidal (c), and hydrophilic
sinusoidal and dual-sinusoidal (d) surfaces. Solid symbols represent droplets in a Cassie state, and open symbols represent droplets in a Wenzel
state. Symbols “plus” and “cross” represent a droplet in a Cassie-Wenzel state.

and for sinusoidal and dual-sinusoidal surfaces as

λ = AT

R2
0

, (28)

where l, d, A, and T are the surface parameters and R0 is an
initial droplet radius. Table II lists the effective static contact
angles of droplets, modeled in previous sections, with respect
to λ. All angles are measured with SEθ̄0

≈ ±0.2◦.
Figure 12 shows the relationship between λ and effective

static contact angles, θx
eff and θz

eff, of droplets on hydrophobic
and hydrophilic rough surfaces. The dependence of θx

eff and
θz

eff on λ is different for Wenzel and Cassie droplets. The
effective contact angles of Cassie droplets decrease with
increasing λ. The effective contact angles of Wenzel droplets
may increase or decrease with increasing λ, depending on
the type of surface geometry. For example, for hydrophilic
dual-rectangular surfaces, the effective contact angles do not
change significantly with λ [Fig. 12(c)], while for other types
of surfaces, θeff may increase or decrease with increasing λ.

The largest effective contact angles are achieved by
Cassie droplets on hydrophobic dual-rectangular surfaces,
and the smallest effective contact angles are reached by
Wenzel droplets on hydrophilic sinusoidal and dual-sinusoidal
surfaces. The angle θz

eff on the rectangular hydrophobic and
hydrophilic surfaces is close to the corresponding θ0, while θz

eff
of sinusoidal hydrophobic and hydrophilic surfaces is smaller
than θ0. For all other considered surfaces, θx

eff and θz
eff are larger

than the corresponding θ0.
We quantify the directional dependence of the effective

static contact angle by εeff, the difference between θx
eff and θz

eff
of each droplet:

εeff = ∣∣θx
eff − θz

eff

∣∣. (29)

We report εeff in Table II and Fig. 13 for all studied values of
λ. For dual-rectangular and dual-sinusoidal hydrophobic and
hydrophilic surfaces εeff is less than 5◦, while for rectangular
and sinusoidal hydrophobic and hydrophilic surfaces εeff varies
in the range from 5◦ to 50◦. Droplets on rectangular and
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FIG. 13. The effective static contact angle difference of droplets
on rough hydrophobic and hydrophilic surfaces. Red: hydrophilic;
blue: hydrophobic; square: rectangular surface; circle: sinusoidal
surface; solid: dual surface; empty: nondual surface.

sinusoidal rough surfaces are extended in the z direction
parallel to groves, and pinned at sharp groove edges only in the
x direction, so their θx

eff are larger than θz
eff, and εeff may achieve

50◦. Elevated blocks on dual-rectangular and dual-sinusoidal
surfaces pose an energy barrier [27,28] hindering the extension
of droplets in both directions, so that droplets are pinned
in the x and z directions, and θ

x,z
eff is much larger than the

corresponding θ0 on a smooth surface, while εeff remains less
than 5◦.

FIG. 14. Comparison of effective contact angles on a fine-
roughness dual-rectangular surface obtained from a high-resolution
(particle spacing 2.5 × 10−5 mm; θx

eff = 149.36◦; θz
eff = 150.28◦) and

a low-resolution (particle spacing 5 × 10−5 mm; θx
eff = 151.52◦;

θz
eff = 150.84◦) simulation. Green particles: solid surface; red par-

ticles: low resolution; blue particles: high resolution.

VIII. THE EFFECT OF RESOLUTION ON EFFECTIVE
STATIC CONTACT ANGLE

To study the effect of resolution on PF-SPH solutions,
we compare static contact angles of droplets on a fine dual-
rectangular-type surface obtained from PF-SPH simulations
with two different resolutions. In the high-resolution sim-
ulation, the number of particles is eight times higher than
the number of particles in the low-resolution simulation.
The particle spacing in the high-resolution simulation is
2.5 × 10−5 mm, the smoothing length is h = 8.55 × 10−5 m,

TABLE III. Effective static contact angles of droplets with R0 ranging from 0.5 to 1.6 mm on fine-, medium-, and coarse-roughness
dual-rectangular hydrophobic surfaces.

R0 (mm) 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6
Req (mm) 0.44 0.54 0.64 0.73 0.83 0.92 1.02 1.11 1.3 1.5
�P (Pa) 330.68 269.33 227.34 199.32 175.3 158.15 142.65 131.08 111.92 97.00

Fine roughness

pc (Pa) 235.81

θx
eff 122.8◦ 135.7◦ 123.7◦ 151.5◦ 133.6◦ 139.3◦ 142.1◦ 129.8◦ 136.2◦ 126.1◦

θz
eff 124.1◦ 137.9◦ 122.7◦ 150.6◦ 135.2◦ 140.7◦ 143.4◦ 136.8◦ 136.7◦ 126.2◦

εeff 1.3◦ 2.2◦ 1.0◦ 0.1◦ 1.6◦ 1.4◦ 1.3◦ 7.0◦ 0.5◦ 0.1◦

Medium roughness

pc (Pa) 193.49

θx
eff 123.4◦ 135.2◦ 142.7◦ 135.5◦ 139.5◦ 129.5◦ 129.1◦ 137.4◦ 135.6◦ 132.8◦

θz
eff 124.1◦ 124.3◦ 138.4◦ 136.6◦ 131.7◦ 129.4◦ 131.2◦ 126.6◦ 137.7◦ 137.2◦

εeff 0.7◦ 10.9◦ 4.3◦ 1.1◦ 7.8◦ 0.1◦ 2.1◦ 0.8◦ 2.2◦ 4.4◦

Coarse roughness

pc (Pa) 209.61

θx
eff 120.6◦ 125.6◦ 136.6◦ 125.9◦ 130.8◦ 140.7◦ 146.4◦ 135.2◦ 128.9◦ 135.8◦

θz
eff 135.3◦ 125.0◦ 139.0◦ 128.1◦ 133.5◦ 126.7◦ 141.1◦ 130.4◦ 141.7◦ 126.6◦

εeff 14.7◦ 0.6◦ 3.4◦ 2.2◦ 2.7◦ 14.0◦ 5.3◦ 4.8◦ 12.8◦ 9.2◦
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FIG. 15. Droplets on a fine-roughness dual-rectangular surface. Equilibrated radii of droplets are 1.5, 1.3, 1.11, 0.92, 0.54, and 0.44 mm.

the mass m of each particle is 1.5625 × 10−11 kg, the speed of
sound c is 4.5 m/s, and the surface tension of water is achieved
with a fluid-fluid interaction strength sff = 1.9 × 10−6. The
low-resolution simulation has the same parameters as the
simulations in the preceding sections.

Figure 14 shows the static contact angles obtained from the
simulations with these two resolutions. The angles θx

eff and θz
eff

are nearly the same in both simulations.

IX. TRANSITIONS BETWEEN CASSIE
AND WENZEL STATES

Here, we simulate ten liquid droplets with initial radii
ranging from 0.5 to 1.6 mm, which are brought into contact
with fine-roughness (d = 0.2 mm; l = 0.15 mm), medium-
roughness (d = 0.25 mm; l = 0.2 mm), and coarse-roughness
(d = 0.25 mm; l = 0.25 mm) dual-rectangular hydrophobic
surfaces. The effective contact angles of these droplets are
listed in Table III. Figure 15 demonstrates six liquid droplets
on a fine-roughness dual-rectangular surface.

All droplets on rough surfaces create unique shapes
depending on the number of blocks they touch, so their θ

x,z
eff

values vary in the range from 120.6◦ to 151.5◦, and εeff varies in
the range from 0.1◦ to 14◦. The variation in θ

x,z
eff for different

droplet sizes can be explained by the Gibbs criterion [28],
which attributes the pinning effects of the liquid-air interface
to sharp edges of the solid surface. In our simulations, for
two different-size droplets placed on equal number of blocks
(droplets with Req = 1.11 and 1.3 mm in Fig. 16), the larger
droplet creates larger θ

x,z
eff , because it is pinned by the edge of

the block. A further increase of the droplet size (the droplet

FIG. 16. Pinning effect of droplets on a fine-roughness dual-
rectangular surface. Equilibrated radii of droplets are 1.11, 1.3, and
1.5 mm.

with Req = 1.5 mm in Fig. 16) leads to an immediate jump to
the next block and decrease of θ

x,z
eff .

We observe a transition between Wenzel and Cassie regimes
based on droplet size (Figs. 15 and 17). Droplets with Req >

0.64 mm on a fine-roughness dual-rectangular surface remain
in the Cassie regime; droplets with Req � 0.64 mm are in a
Wenzel state. Various authors [e.g., 29–31] have investigated
this transition phenomenon in terms of critical capillary
pressure pc:

pc = −σf cos(θ0)

(1 − f )L
, (30)

where σ is the water surface tension, θ0 is the corresponding
static contact angle of a droplet on a flat hydrophobic surface,
and f is a fraction of the wetted projection area, where L = l/4
and f = l2/(l + d)2. Here l and d are the surface parameters
as described in the previous chapters.

A Cassie-to-Wenzel transition occurs if the pressure inside
the droplet, �P , becomes larger than pc, where �P can be
found from the Young-Laplace law:

�P = 2σ

Req
. (31)

For a fine-roughness dual-rectangular surface and the given
fluid configuration, droplets switch from a Cassie to a Wenzel

0.4 0.6 0.8 1 1.2 1.4 1.6
50
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FIG. 17. Cassie-to-Wenzel transition based on critical capillary
pressure and internal pressures of droplets with Req ranging from 0.44
to 1.5 mm for a fine-roughness dual-rectangular surface.
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FIG. 18. Cassie-to-Wenzel transition based on critical capillary
pressures and internal pressures of droplets ranging from 97.00 to
330.68 Pa (corresponding Req are ranging from 1.5 to 0.44 mm)
for fine-, medium-, and coarse-roughness dual-rectangular surfaces.
Open symbols: Wenzel regime; filled symbols: Cassie regime.

state when �P > pc (pc = 235.81 Pa) at a radius Req <

0.62 mm (Fig. 17).
Some droplets with a value �P close to the theoretical

value pc (like a droplet with Req = 0.64 mm in Fig. 17) can be
in both Cassie and Wenzel states, such that no clear transition
point can be detected. Instead we define a transition region for
droplets with �P = pc ± 30 Pa which can be in both states
(Fig. 18) based on our simulation results. A region between
two dashed lines in Fig. 18 represents the region at which
the Cassie-to-Wenzel transition occurs for all types of dual
rectangular surfaces. All large droplets with Req � 0.92 mm
(�P � 158.15 Pa) are in a Cassie state, while small droplets
with Req � 0.64 mm (�P � 227.34 Pa) are in a Wenzel state.
The width of the transition region may depend on resolution

effects or pressure fluctuations during the equilibration of
droplets on the surface.

Next, we investigate the dependence of droplet state on
initial conditions. We simulate droplets with Req = 0.64 and
1.3 mm, which are brought into contact with a fine-roughness
dual-rectangular surface. In the first case, the droplet center
is located between two rectangular blocks [left droplets in
Figs. 19(a) and 19(c)]; for the second case, the droplet center is
located above the center of a rectangular block [right droplets
in Figs. 19(a) and 19(c)]. For both cases the droplet state
remains the same, independent on initial placement relative to
the surface roughness. The small droplet stays in a Wenzel
state, and the large one in a Cassie state. This difference
is caused by the initial placement of droplets relative to the
roughness, which influences the effective static contact angle
due to pinning effects (Table IV). A small droplet with a center
located above a block has a larger effective contact angle. For
the large droplet the effective contact angle is larger if the
droplet center is located between blocks.

Figures 19(b) and 19(d) show droplets with Req = 0.64
and 1.3 mm, dropped from 1.75 mm height (measured be-
tween surface and droplet center). Small droplets with Req =
0.64 mm stay in a Wenzel state [Fig. 19(b)], while large
droplets with Req = 1.3 mm turn from a Cassie to Wenzel state
[Fig. 19(d)] due to additional pressure caused by gravitational
impact. Therefore, the initial height from which droplets are
dropped influences the effective contact angle hysteresis. Both
small and large droplets dropped from 1.75 mm height have
smaller effective contact angles than droplets placed directly
above a surface.

X. DROPLET FLOW ON ROUGH SURFACES

In this section, we study droplet flow on rough surfaces
with a surface inclination angle α ranging from 10◦ to 90◦. We
create two types of rough surfaces: a surface with rectangular
bars oriented parallel to the flow direction and one with
rectangular bars oriented perpendicular to the flow direction.
For comparison, we also simulate flow on smooth surfaces. We

(a) (b)

(d)(c)

FIG. 19. Droplet states depending on initial conditions: (a) droplets with Req = 0.64 mm are brought into contact with a rough surface;
(b) droplets with Req = 0.64 mm are dropped from 1.3 mm height; (c) droplets with Req = 1.3 mm are brought into contact with a rough
surface; (d) droplets with Req = 1.3 mm are dropped from 1.75 mm height.
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TABLE IV. Effective static contact angles of droplets with Req = 0.64 and 1.3 mm on a fine-roughness dual-rectangular hydrophobic
surface depending on initial conditions.

Req = 0.64 mm Req = 1.3 mm

Mode of placement Immediate contacta Droppedb Immediate contact Dropped

Droplet Pit Block Pit Block Pit Block Pit Block
position centered centered centered centered centered centered centered centered

θx
eff 121.7◦ 138.4◦ 118.7◦ 113.3◦ 137.9◦ 129.5◦ 118.8◦ 113.3◦

θz
eff 122.1◦ 137.9◦ 119.1◦ 113.5◦ 138.2◦ 130.4◦ 118.4◦ 113.8◦

εeff 0.4◦ 0.5◦ 0.4◦ 0.2◦ 0.3◦ 0.9◦ 0.4◦ 0.5◦

aEquilibrated in contact with the surface.
bDropped from 1.75 mm height.

simulate flow of two different states: flow of Cassie droplets
on microscopically hydrophobic surfaces (with θ0 = 122.7◦
corresponding to ssf = 0), and flow of Wenzel droplets on
microscopically hydrophilic surfaces (with θ0 = 84.7◦ corre-
sponding to ssf = 1.3 × 10−6). In these simulations, a droplet
is discretized with 195 216 fluid particles and the surface with
approximately 235 000 solid particles. The simulations are run
on 32 cores.

hydrophilic
(Wenzel)

hydrophobic
(Cassie)

hydrophilic
(Wenzel)

hydrophobic
(Cassie)

(b)(a)

FIG. 20. Hydrophobic and hydrophilic droplets flowing on a
rough rectangular surface with rectangular bars oriented parallel to
the flow direction (a) and rectangular bars oriented perpendicular to
the flow direction (b) at the time step t = 50 000 (46.296 ms). Surface
inclination angle is α = 90◦.

Figure 20 shows simulation results for Cassie and Wenzel
droplet flows on these rough surfaces with α = 90◦ after 50 000
time steps (t = 46.296 ms). Cassie and Wenzel droplets can
easily slide along the rough surface with inclination angles α

ranging from 10◦ to 90◦ if rectangular bars are oriented parallel
to the flow direction. However, if rectangular bars are oriented
perpendicular to the flow direction, a Cassie droplet barely
moves and a Wenzel droplet remains stationary for all surface
inclination angles α. These results show a good qualitative
agreement with experimental results of [9].

Next, we investigate the relationship between Bo and
Ca numbers observed in our simulations. It was shown by
Podgorski et al. [15] that droplet dynamics on smooth surfaces
follows the linear scaling law:

Ca = γ Bo sin(α) − �θ, (32)

where the Ca number is defined as

Ca = μv/σ, (33)

and the Bo number as

Bo = ρgV 2/3

σ
. (34)

Here, v is the droplet velocity, V the equilibrium droplet
volume, α the surface inclination angle measured from the
horizontal, �θ is a perimeter-averaged projection factor of
the surface tension, and γ a constant related to the specific
fluid-solid combination. The linear dependence between Ca
and Bo for droplet flow on smooth surfaces was numerically
confirmed by Kordilla et al. [17] via PF-SPH simulations for
a range of wetting conditions; however, it has not been shown
to hold for rough surfaces.

The results of our simulations, plotted in Fig. 21, demon-
strate an existing linear relationship between Ca and Bo
numbers for Bo sin α < 1. For higher values of Bo sin α,
the relationship becomes nonlinear. A similar transition from
linear to nonlinear behavior for droplets on smooth surfaces has
been reported in Kordilla et al. [17] and Podgorski et al. [15],
which is mainly caused by the deviation of droplet shapes from
the spherical cap form.

Our results show that Cassie droplets on a rough surface
with parallel orientation of bars to the flow direction move
approximately 1.2 times faster than droplets on a smooth
surface with the same θ0 and α. On the other hand, Wenzel
droplets on a surface with the same roughness move 1.8 times
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FIG. 21. Dimensionless scaling for smooth and rough hydropho-
bic and hydrophilic surfaces with different orientations of roughness
relative to the droplet flow direction. (par.): flow parallel to the
orientation of the bars; (perp.): flow perpendicular to the orientation
of bars. The surface inclination angles α are 10◦, 20◦, 30◦, 40◦, 50◦,
60◦, 70◦,80◦, and 90◦.

slower than a droplet on a smooth surface with the same θ0 and
α. Cassie droplets on the rough surface with bars perpendicular
to flow do not start moving until Bo sin α ≈ 0.6. For larger
Bo sin α, Cassie droplets accelerate faster than droplets on
a smooth surface with the same θ0. Wenzel droplets on the
rough surface with “perpendicular bars” remain immobile for
all considered Bo sin α.

XI. CONCLUSION

We employed a three-dimensional PF-SPH model to sim-
ulate static and dynamic droplets on rough hydrophobic and
hydrophilic surfaces. We demonstrate that PF-SPH can model
flow under various wetting conditions. We also validated the
model against several analytical solutions and performed a
convergence study.

In PF-SPH, the surface tension and microscopic static
contact angle θ0 result from pairwise forces added into the SPH
momentum conservation equation. In this work, we chose the
pairwise forces to cover a wide range of microscopic static
contact angles. We simulated droplets and measured effective
static contact angles θeff on surfaces with different types
of surface roughness, including rectangular, dual-rectangular,
sinusoidal, and dual-sinusoidal. For each type of surface geom-
etry, we considered microscale hydrophobic and hydrophilic
surfaces with different degrees of roughness, including fine,
medium, and coarse.

We observed that Cassie droplets form on microscopi-
cally hydrophobic surfaces, and Wenzel droplets form on
hydrophilic surfaces. We studied the dependence of θeff on the

degree of roughness, characterized by a dimensionless ratio
λ, with larger λ corresponding to coarser surface roughness
relative to the droplet size. The effective static contact angle
of Cassie droplets decreases with increasing λ. The effective
contact angle of Wenzel droplets may increase or decrease
with increasing λ, which is attributed to the existence of
pinning effects. For most studied rough surfaces, we found
θeff to be greater than θ0. Our results showed that roughness
can cause microscopically hydrophilic surfaces to behave
as macroscopically hydrophobic. Moreover, microscopically
hydrophilic surfaces showed even stronger macroscopic hy-
drophobic behavior.

In order to investigate the transition between the Cassie and
Wenzel regimes we simulated liquid droplets with initial radii
ranging from 0.5 to 1.6 mm on dual-rectangular hydrophobic
surfaces and compare our results to theoretical predictions.
Good agreement is found between the analytical solution and
PF-SPH simulations. However, depending on size and internal
pressure, a transition region exists where droplets may stay in
a Cassie or Wenzel state. This behavior is shown to depend on
initial conditions, in terms of lateral droplet position relative
to the roughness and initial height. Both parameters control
the hysteresis of dynamic contact angles due to pinning effects
and are also present in our simulations, due to the rather coarse
roughness of the surfaces relative to droplet size.

Finally, we studied droplet flow on inclined rough and
smooth surfaces. We demonstrated that the type and degree
of roughness, as well as the orientation of surface features
relative to flow, significantly affect droplet dynamics. If
rectangular bars are oriented parallel to the flow direction,
water droplets can easily slide on rough hydrophobic and
hydrophilic surfaces. On the other hand, if rectangular bars
are oriented perpendicular to the flow direction, droplets
barely move on hydrophobic surfaces and remain stationary
on hydrophilic surfaces for all surface inclination angles. We
demonstrated numerically that the linear scaling between the
Bond and capillary numbers described in Podgorski et al. [15]
is valid not only for sliding droplets on smooth surfaces, but
also for sliding droplets on rough hydrophobic and hydrophilic
surfaces. The presented simulations covered a wide spectrum
of wetting conditions and types of surface roughness. The in-
fluence of surface roughness and orientation on flow dynamics
in the case of more complex flow regimes, such as rivulets and
stable and unstable films, is part of future work.
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