Flow Mode Dependent Partitioning Processes of Preferential Flow Dynamics in Unsaturated Fractures - Findings From Analogue Percolation Experiments

¹University of Göttingen, Dept. of Applied Geology, Germany <torsten.noffz@uni-goettingen.de> ² Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Spain <marco.dentz@csic.es>

I. Introduction

Free-surface flow at fracture intersections

- gravity driven free-surface flow has been identified and described in flow visualization experiments (e.g. Towell (1966); Schmucki (1990); Podgorski (2001))
- experimental approaches using analogue fracture networks suggest the occurrence of versatile flow dynamics during infiltration in the fractured vadose zone (e.g. Dragila (2003, 2004); Glass (2003); Ghezzehei (2005); Nicholl (2005))
- field studies indicate the existence of preferential flow paths in unsaturated conditions (Nimmo (2012)), which numerical approaches recreating flow and transport fail to recover due to the non-linear nature of mass partitioning processes

Objective

- develop and apply methods to accurately delineate droplet and rivulet flow in analogue fracture percolation experiments
- identify the effects of variable flow regimes on mass travel time distribution
- investigate the impacts of variable fracture geometry on partitioning dynamics at unsaturated fracture intersections
- employ an analytical solution proposed by Kordilla et al. (2017) to describe capillary driven fracture inflow

II. Methods

Experimental set-up: a. Water container, b. silicone tubes, Figure 1 c. multichannel dispenser, d. PMMA (poly(methyl methacrylate)) cube $(\theta_0 = (65.2 \pm 2.9)^\circ)$, e. coated grate, f. digital balance, and g. computer

Figure 2: Inlet array consisting of a pre-drilled PMMA board (b.) on top of the upper cube (c.) fixating the silicone tubes (a.) and PTFE (polytetrafluorethylene) outlets (d.)

Figure 3: Fracture (left) and cube geometry (right) including variable parameters for aperture width d_f and horizontal offsets of the cubes d_o

Torsten Noffz¹, Marco Dentz², Martin Sauter¹, and Jannes Kordilla¹

III. Delineation of flow regimes

Free surface flow at Figure $Q_0 = 1.5 \,\mathrm{ml/min}$ (a.), $2.5 \,\mathrm{ml/min}$ (b.,c.), and 3 ml/min (d.).

- the transition is characterized by sliding drops and intermittent rivulets
- a high atm. pressure and temperature seemingly favours the stability of rivulet flow

Flow rate

• the volumetric flow rate Q_0 is varied to separate continuous droplet ($\leq 1.5 \,\mathrm{ml/min}$) and rivulet flow ($\geq 3 \,\mathrm{ml/min}$)

Figure 5: Atm. pressure and temperature vs. average number of stable rivulets n_r produced by 15 inlets. $R^2 = 0.08$ to 0.21 for displayed linear trends

IV. Partitioning dynamics

1. Single-Inlet

- a sliding drop exhibits complex partitioning phenomena at unsaturated fracture intersections and either bypasses the aperture (a.) or contributes its complete or partial mass to the filling of the fracture (b.-f.
- a rivulet establishes a hydraulic connection between inlet and fracture while effectively filling it (g.)

Figure 6: Partitioning dynamics at a horizontal fracture intersection captured at 240 fps.

Figure 7: Average mass fractionation M_b/M vs. flow rate for $d_f = 2.5 \, \text{mm}$.

• the total liquid mass M can be calculated by

$$M(t) = Q_0 t, \tag{1}$$

where $Q_0 [L^3 T^{-1}]$ is the volumetric flow rate. The mass fractionation at time t is given by

$$M(t) = M_f(t) + M_b(t) \tag{2}$$

with M_f being the mass stored in the fracture and M_b representing the bypassing water.

iments

IV. Partitioning dynamics (cont.)

Figure 8: Average M_b vs. time for single-inlet experiments.

2. Multi-inlet

• equilibrium is reached where the fracture is fully saturated and Q_0 equals the discharge onto the drip pan; M_b rises linearly

• steady-state conditions are successively delayed as the number of fractures n_f and their respective aperture widths d_f increase

• hence, the disparity in bypass efficiency of droplet and rivulet flow is considerably large as long as unsaturated conditions are maintained

Figure 10: $Q_f(t)/Q_0$ and fitted eq. 9 for multi-inlet exper-

- before steady-state conditions are established the contrast of M_b/M is noticeably large for droplet and rivulet flow
- where the horizontal offset d_o is 0 or negative, prevailing droplet flow leads to more fluid bypassing the fracture
- rivulets effectively contribute to its filling
- a small opening width d_f and positive horizontal offsets d_o benefit the mass transport across the aperture

Figure 9: Ensemble means of M_h vs. time for multi-inlet experiments.

3. Washburn-type fracture inflow

• an analytical solution for capillary driven fracture inflow Q_f following Washburn (1921) is proposed by Kordilla et al. (2017):

The volumetric flow rate
$$Q_0$$
 becomes
$$\frac{dM(t)}{dt} = Q_0 = \frac{dM_f(t)}{dt} + \frac{dM_b(t)}{dt} \tag{3}$$

herefore, the volumetric fracture inflow rate is

$$Q_f(t) = \frac{dM_f(t)}{dt} = Q_0 - \frac{dM_b(t)}{dt}.$$
(4)

The penetration length l(t) is obtained by combining Poiseuille's law for planar fractures with an expression for the differential fluid volume in the element of dl(t)

$$\frac{dl(t)}{dt} = \frac{c_f}{l(t)} \tag{5}$$
where the constant c_f is

 $\Delta P_c = \frac{2\sigma \cos(\theta)}{dr}$ (7)

IV. Partitioning dynamics (cont.)

where σ represents the surface tension and θ being the contact angle. Solving eq. 5 for the initial length $l(t = t_0) = l_0$ gives

 $l(t) = \sqrt{l_0^2 + 2c_f(t - t_0)}.$ The fluid mass within the fracture is $M_f(t) = A_f l(t)$ for an uniformly advancing front, where A_f is the cross-sectional area of the fracture aperture. Thus, the flow rate into the fracture according to eq. 4 is

$$Q_f(t) = A_f \frac{dl(t)}{dt}$$

with $A_f c_f = Q_0$ and $k_f = c_f / l_0^2$.

Outlook

- continuities

We obtain $\varphi(t-t')$ if

 $\varphi(t-t') = \frac{dQ^0_A}{t}$ where $Q_A^0(t) = \frac{Q_A(t)}{Q_0}$

is the normalized ou The volumetric out

$$Q_A^1 = \int_0^t \varphi(t -$$

Outflow from a sec
$$Q_A^2 = \int^t \varphi(t - t)$$

$$J_0$$

hence, for a syste $Q_A^n = \int_0^t \varphi(t - t)$

Acknowledgement: This work was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under grant no. SA 501/26-1 and KO 53591/1-1. **References:** Washburn (1921): Phys. Rev. (15(3)); Towell & Rothfeld (1966): A.I.Ch.E. J. (12(5)); Schmucki & Laso (1990): J. of Fluid Mech. (215); Dragila & Weisbrod (2003): Adv. in Water Res. (26); Glass et al. (2003): Water Resour. Res. (39); Dragila & Weisbrod (2004): Water Resour. Res. (40); Ghezzehei (2004): Water Resour. Res. (40); Ghezzehei (2005): Water Resour. Res. (41); Nicholl & Glass (2005): Vad. Zone J. (4); Nimmo (2012): Hydr. Proc. 26; Kordilla et al. (2017): Water Resour. Res. (53)

$$= \frac{Q_0}{\sqrt{1 + 2k_f(t - t_0)}}$$

• parameters k_f and t_0 are adjusted in order to match the behaviour of eq. 9 with experimental results

Figure 11: Adjusted parameters t_0 and k_f for eq. 9.

V. Conclusion

• free-surface flow exhibits complex partitioning dynamics at unsaturated fracture intersections with a considerably higher bypass efficiency of droplet flow

• variations of fracture geometry and the extent of the fracture cascade strongly influence the mass travel time distribution • Washburn-type fracture inflow can be observed and reproduced for both flow regimes by an analytical solution

• results will be applied to validate SPH (Smoothed Particle Hydrodynamics) models of gravity driven free-surface flow • the proposed analytical solution fails to describe the inflow at an individual fracture in settings where $n_f > 1$ but rather approximates a mixed signature of simultaneously filling dis-

• hence, a memory function will be employed to reproduce the inflow at a selected fracture via rivulet flow and to possibly enable further upscaling:

in the sense of a memory function as	
$\frac{(t)}{t}$	(10)
	(11)
atflow rate from the system ($Q_0 = \text{const.}$), initially consisting of two cubes with one horizontal flow rate Q_A^1 can then be obtained from	fracture.
$t^{\prime})Q^{0}_{A}(t^{\prime})dt^{\prime}.$	(12)
ond horizontal fracture, that is, for a system with three cubes can then be computed as	
$t^{\prime})Q_{A}^{1}(t^{\prime})dt^{\prime}$	(13)
n consisting of n horizontal fractures we get	
$t')Q_A^{n-1}(t')dt'.$	(14)