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Abstract—Simulation of unsaturated free-surface flow in frac-
tured geological media represents a challenge due to the highly
heterogeneous flow field induced by extensive faults, joints and
fissures. Free-surface flow in unsaturated media leads to highly
intermittent flow regimes and flow velocities well above those
assumed for the bulk volume. However, common modeling
approaches relying on volume-averaged effective equations fail
to capture this flow feature. In this work we present micro-scale
flow simulations using a three-dimensional multiphase SPH code.
Pairwise fluid-fluid and solid-fluid interaction forces are used to
simulate a wide range of wetting conditions encountered on rock
surfaces. It is shown that static contact angles for sessiles droplets
are independent of the model discretization, i.e. the total amount
of particles. Thus, computation times can be reduced without
sacrificing qualitative or quantitative information. Furthermore
we show that our model is in accordance with general scaling
laws for droplet flow.

I. INTRODUCTION

Facing a global climate change and a rapidly growing world
population the management of limited water resources be-
comes increasingly difficult. Aquifers (i.e. porous and/or frac-
tured rocks from which economically profitable quantities of
water can be extracted) provide the main storage for fresh
water within the hydrogeological cycle between atmosphere
and surface waters. The subsurface can be divided into (1)
an unsaturated and (2) a saturated zone. The saturated zone
is delineated by the water table, i.e. all available voids are
filled with water, whereas the unsaturated zone comprises
the part of the subsurface between water table and surface
where pores and fractures are only partially filled with water.
The unsaturated zone therefor provides the main pathway for
precipitation and surface waters to the saturated zone.

Compared to unconsolidated porous media tectonically
stressed aquifers provide additional highly conductive frac-
tures, joints and faults embedded in a low conductive matrix.
Even though their total fraction of the aquifers porosity may be
as low as 1 % [1] the importance of fractures for the transport
of water and contaminants has been proven by a variety of au-
thors using integral fieldtests as well as laboratory experiments
([2],[3],[4],[5],[6]) and analytical solutions ([7],[8],[9]). As
about 50 % of the earth’s surface [10] is covered by hard rocks
integrated management of these resources largely depends on

a thorough understanding of the aquifer’s dynamical response
to recharge and contamination.

Transport of water through the unsaturated zone is partially
poorly unterstood due to the highly non-linear and intermittent
flow processes involved ([11],[12],[13]). In unconsolidated
media unsaturated flow is often simulated by volume-averaged
effective modeling approaches such as the Richard’s equation
[14]. However, the behavior of water in unsaturated fractures
is affected by a multitude of hydrodynamic effects that cannot
be captured by classical continuum models and may give rise
to highly nonlinear flow modes. Depending on the fracture
properties (aperture, inclination, roughness) fluid flow within
fracture elements is controlled by the interaction of body
and surface forces. Thus gravity driven or capillary driven
flow may prevail. Microscale modeling approaches should
therefor be able to deal with the resulting highly dynamical
interfaces and provide a flexible numerical tool for validation
and prediction of transient flow. Furthermore transport relevant
properties such as velocity and surface contact area are of
interest for the characterization of matrix-fracture interaction
and require adequate numerical techniques.

This paper demonstrates how Smoothed Particle Hydrody-
namics (SPH) can be used to simulate small scale free-surface
fluid flow in wide aperture fractures. Particular attention is
paid to general approaches for calibration and verification of
the SPH model for droplet flow.

II. METHOD

In the following we give a brief description of our model
and the governing equations. More detailed derivations and
approximations involved in the SPH method can be found for
example in ( [15],[16],[17]).

We use an SPH momentum conservation equation proposed
in [15]:

dvi
dt

=−
N∑
j=1

mj

(
Pj
ρ2j

+
Pi
ρ2i

+ ηij

)
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Fij,

(1)
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Fig. 1. Interaction potential

where v is the particle velocity, t is the time, P and ρ denote
pressure and density, m is mass of particle i and g is the
gravitational acceleration. We use a fourth-order weighting
function Wi, [18]. For computational efficiency, the support
of W is set to h = 1.0 and all particles are assumed to have
the same mass, mi = 1.0. All variables in the SPH model
are given in consistent model units. The viscosity term ηij is
given by [19] as

ηij = 2µ
vi − vj

ρiρj(ri − rj)2
(ri − rj). (2)

The surface tension is created by a particle-particle interac-
tion forces

∑N
j=1 Fij, [15]. In this work we construct an

interparticle force acting on particle i following [20] by
superposition of two cubic spline kernels W1(|ri − rj |, h1)
and W2(|ri − rj |, h2),

Fij =

 sij [AW1(r, h1) +BW2(r, h2)] |ri − rj | ≤ h

0 |ri − rj | > h,
(3)

where A = 2.0, h1 = 0.8, B = −1.0 and h2 = 1.0 with
W1(|ri− rj | > 0.8, h1) = 0. The resulting function is smooth
and continous with a short-range repulsive and a long-range
attractive part as seen in Fig. 1. The parameter sij controls the
interaction strength and has values sfs (fluid-solid) and sff
(fluid-fluid).

Density is obtained from the general field approximation
given by

ρi =

N∑
j=1

mjW (|ri − rj |, h) (4)

and the equation system is closed by a van der Waals equation
of state (EOS)

P =
ρkbmT

1− ρ bm
− a

m
ρ2 (5)

where kb is the Boltzmann constant, T is the temperature and a
and b are the van der Waals constants. Values for the constants
are kbT = 1.6, a = 3.0 and b = 1/3.

III. MODEL CALIBRATION

Fundamental fluid properties are initially defined by deter-
mining the surface tension. Using Young-Laplace the surface
tension can be obtained from droplets in zero gravity

σ =
R

2
∆P0 (6)

where R is the droplet radius and ∆P0 is the pressure gradient.
As the surrounding pressure is zero (the airphase is not
discretized using particles) ∆P0 = P0. However, as the EOS
does not consider the additional pressure contribution due to
the interaction forces the total pressure has to be obtained
through the Virial theorem as shown by [15] and [21]:

P0 =
1

2dV

∑
i

∑
j

rijfij =
1

8r3virial

∑
i

∑
j

rijfij (7)

where d = 3 in a three-dimensional system, rvirial = R − 1
and fij = midvi/dt. At equilibrium conditions the contribu-
tion of viscous forces to fij is zero thus the resulting pressure
P0 is independent of the prescribed model viscosity. As shown
in Fig. 2 pressure and surface tension are nearly constant.
However, for smaller droplets with radius close to h, the
numerical resolution becomes insufficient and we observe a
slight deviation from the Young-Laplace law. Corrections such
as CSPM [22] or a kernel normalization [23] can be used to
reduce this error. In the following, all SPH simulations use an
interaction force sff = 0.05 i.e. a surface tension of σ = 0.25.
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Fig. 2. Surface tension and pressure for various droplet sizes, g = 0,
sff = 0.05
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Fig. 3. Static contact angles for different fluid-solid interactions strengths. From left to right: sfs = 0.01, 0.03, 0.05

A. Static Contact Angles

We use the Bond number and Eq. 6 to relate gravitational
accelerations in the model units and the SI units:

Bo = (
ρgV 2/3

σ
)sph = (

ρgV 2/3

σ
)SI , (8)

where ρ = 999.7 kg m−3, g = 9.81 kg m s−2 and σ =
0.0742 N m−1 for water at average subsurface temperatures of
10 ◦C. The average density in the SPH simulations is ρ = 39.2.

The initially equilibrated droplet (Bo = 1.0) is slowly
placed on the surface by gradually increasing the gravitational
acceleration and the solid-fluid interaction force to their max-
imum values g = 0.0001790 and ssf = 0.05. The surface
has a thickness of 4 h. The contact angle is measured when a
stationary state is reached. The interaction force is then incre-
mentally decreased (ssf = 0.05, 0.04, ...0.01, 0.005, 0.001) to
measure the dependence of the contact angle on ssf .

Contact angles are measured visually for the shown simula-
tions. We also fitted a polynomial to the particle hull yielding
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Fig. 4. Contact angles for varying interaction force ssf . Bo = 1.0 for all
radii.

an analytical solution for the contact angle at the base of the
droplet. Depending on the discretization this method may be
less reliable as surfaces are not always perfectly smooth.

In order to investigate the influence of discretization on
the static contact angle we used different droplet radii while
keeping the Bond number constant. As shown in Fig. 4 the
highest contact angles of about 120◦− 140◦ are measured for
very low values ssf = 0.001. Such high contact angles are
likely for synthetic (super-)hydrophobic surfaces as often used
in laboratory experiments. Water contact angles encountered
on rock surfaces are much lower, ranging from 20◦ − 40◦ [9]
which corresponds to values of ssf between 0.05 and 0.04
where forces become comparable to the fluid-fluid interaction
force sff . To study the effect of resolution several droplets
with constant Bond number Bo = 1.0 but different radii
(R = 1.77 h, 902 particles to R = 5.85 h, 77993 particles)
were simulated. Simulations yielded contact angles within sev-
eral percent of each other. Thus for stationary conditions the
contact angle can be considered independent of the resolution.
However, further studies are necessary for dynamic contact
angle hysteresis under transient conditions as well as different
Bond numbers.

IV. TRANSIENT DROPLETS

Experiments on droplet dynamics on surfaces have been
investigated by numerous authors. In order to calibrate and
verify our model we use a general scaling law as introduced
by [24]. The proposed scaling relies on a simple force balance
and states as follows:

Ca ∼ Bo sin(α)−∆θ (9)

where the capillary number is defined as Ca = µv/σ, v
is the droplet velocity, α is the surface inclination angle
measured from the horizontal and ∆θ is a perimeter-average
projection factor of the surface tension. Following [9] we
define a proportionality constant γ such that

Ca = γ Bo sin(α)−∆θ (10)

where γ and ∆θ are empirical constants unique for a given
fluid-solid system. As noted by [24] the linear scaling holds
only for droplets with shapes close to a spherical cap. As
soon as droplets begin to change their shape, e.g. develop
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Fig. 5. Linear scaling for two different values of ssf . Surface inclination angles are varied from 10◦ to 90◦.

strong tails and possibly break up into smaller droplets the
force balance assumptions fail such that droplets of different
Bond numbers for a given fluid-solid system will not share
common values γ and ∆θ anymore.

The model domain for transient droplet flow simulations
has sizes x = 128 h, y = 64 h and z = 16 h corresponding
to 45.7× 22.8× 5.7 mm. Droplets are initially placed on the
surface close to x = 0.0. We then gradually increase the
interaction force ssf up to the maximum value (0.01, 0.02
... 0.05) and wait until the droplet height remains constant.
Gravitational acceleration is then slowly increased up to the
maximum value of 0.0001139. The nine different droplets
range from 0.14 to 1.5 in terms of the Bond number (droplet
radii between 0.63 and 2.09 mm). The surface inclination
ranges from 10◦ to 90◦ such that for every static contact angle
θs 81 different values for Bo sin(α) are obtained. Droplet
velocities are measured by tracking the droplet front position
over time and evaluating dx/dt at maximum acceleration
over a time intervall long enough to average out temporary
fluctuations due to sudden particle movements at the droplet
front. Such behavior mainly occurs at low Bond numbers close
to the onset of droplet movement when body forces only
partially exceed drag forces.

Fig. 5 shows two different simulation setups where ssf =
0.03 and ssf = 0.05 corresponding to static contact angles of
60◦ and 25◦. Viscosity is µ = 0.03 for all shown simulations.
The results clearly show that within the given range of Bond
numbers (i.e. droplets with radii smaller or in the order of
the capillary length of water) the proposed scaling law holds.
Topview droplet shapes are mostly round or become slightly

cornered at higher Bond numbers (see Fig. 6). Note that for
higher Bond numbers droplets may leave behind a thin film
of fluid. In comparison to the total droplet volume and for the
simulated timespan this net mass loss can be neglected. As no
pearling or strong tailing effects can be observed, the simple
force balance of [24] can be applied.

The values of γ and ∆θ are close to values reported for
example by [9]. However, as fractured rock surfaces are highly
heterogeneous the exact value is not known and depends on
the investigated rock properties. Reynolds numbers for such
microscale systems can range from less than 5 to as much as
1100 with velocities of up to 70 cm s−1 as reported by [25]
(laboratory experiments on broken glass surfaces) where

Re =
ρ v V (1/3)

µ
. (11)

Maximum Reynolds numbers for simulations as shown in Fig.
5 are 302 (θs = 60◦) and 48 (θs = 25◦) with maximum
velocities of 21 cm s−1 and 3.2 cm s−1. Further calibration
of these characteristic parameters (e.g. as reported in lab-
oratory experiments) can be achieved by simply adjusting
the viscosity (assuming that static contact angles are known).
However, given the relatively wide parameter ranges reported
in literature and considering the data scarcity it should be of
primary concern to provide physically correct model behavior
as verified by the above dimensionless scaling law.

V. CONCLUSION

Application of the SPH method to hydrogeological modeling
in unsaturated fractured aquifer systems enables us to gain
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Fig. 6. Droplet (R = 5.85) for two different values of ssf and two inclination angles at maximum velocity (same timestep shown in all pictures). Note
that boundaries have a thickness of 4 h but are not shown here.

further insight into the highly nonlinear flow dynamics on such
small scales. It is shown that the obtained static contact angles
are independent of resolution, thus for stationary conditions a
relatively coarse discretization may be used in order to save
computation time. Furthermore we show that our model gives
correct results for droplet flow according to the general scaling
law proposed by [24]. Using dimensionless proportionality
constants [9] we are able to define unique parameter com-
binations for a given fluid/solid system.

Due to the complex flow dynamics occurring on rough
fracture surfaces further research is needed to verify additional
flow regimes such as rivulet flow [26], (adsorbed) film flow
([27],[9],[2]) and corresponding regime transitions. Surface
characteristics, in particular (micro-)roughness are currently
not included for easier verification and comparison with
available laboratory data. However, as shown by [28] the
implementation of more complex geometries is possible and
illustrates the flexibility of SPH.
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