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Abstract—Simulation of flow in fractured porous media rep-
resents a challenge due to the highly non-linear dynamics of
fluid-air interfaces. Here we present small-scale flow simulations
on wide aperture fractures using a modified three-dimensional
multiphase SPH model [1]. The model is enhanced to include the
effects of random thermal noise and able to reproduce a wide
range of wetting conditions and Reynolds numbers encountered
in laboratory experiments using pairwise fluid-fluid and solid-
fluid interaction forces. Static and transient flow dynamics are
compared to empirical and semianalytical solutions: (1) Droplets
in a critical state are in agreement with laboratory experiments
of [2]. (2) Well-defined random thermal noise is introduced via
the fluctuation-dissipation theorem and its effect on dynamics
of droplets in a critical state is investigated. (3) Transient flow
dynamics on dry surfaces are validated using the dimensionless
relationships established by [3] and compared to (4) dynamics
on prewetted surfaces where flow velocities are shown to be
nearly tripled. Finally we establish flow regimes and occurence
of trailing films on initially dry fracture surfaces based on
dimensionless scaling parameters and Reynolds numbers.

I. INTRODUCTION

Aquifers are the largest water reservoirs for continental fresh-
water. Groundwater recharge depends on the geometrical and
hydraulic properties of the vadose zone (rock formations
between surface and water table) where pore space is only
partially filled with water. The underlying saturated zone,
delineated by the water table, may reach depths of several hun-
dred meters and therefore is coupled to the hydrodynamic state
of the unsaturated zone. Quantification of recharge and water
travel times through the unsaturated zone are of importance
for understanding of large-scale hydraulic behavior, transport
of contaminants, management of groundwater resources and
nuclear waste repositories ( [4], [5]).

The large heterogeneity of the hydraulic parameter field
found in fractured geological media represents a challenge
for numerical modeling of flow and transport, especially in
the unsaturated zone, where high flow intermittency ( [6],
[7], [8]), preferential pathways ( [9], [10], [11]), and complex
interaction of porous matrix and fractures have to be con-
sidered ( [12], [13]). Most macro-scale effective unsaturated
flow models underestimate flow velocities and travel time

distributions on local scale even though they might be adequate
to simulate catchment scale dynamics.

Small scale flow dynamics in fractures are governed by
the complex interplay of body and surface forces resulting in
several flow regimes such as absorbed films ( [14]), droplets (
[3], [15], [7]), rivulets ( [16] , [17]) and traveling liquid waves
which all contribute to the rapid movement of water through
the unsaturated zone and interaction with the porous matrix
system.

Here we want to present simulations of flow in fractured
media in order to gain a deeper understanding of the complex
flow dynamics and show the versatility of Smoothed Particle
Hydrodynamics in this context.

II. METHOD

In the following we give a brief description of our model and
the governing equations. Detailed derivations and approxima-
tions involved in the SPH method can be found, for example,
in ( [18], [19]). We use an SPH discretization of the Navier-
Stokes equations following [1]:

dvi
dt

= −
N∑
j=1

mj

(
Pj
ρ2j

+
Pi
ρ2i

)
∇Wi(|rij |, h)

+ ηij + g +mi

N∑
j=1

Fij

(1)

where v is the particle velocity, t is the time, P and ρ
denote pressure and density, m is mass of particle i and g
is the gravitational acceleration. Following [20] a fourth-order
weighting function Wi is employed where the support of W is
set to h = 1.0 and all particles are assumed to have the same
mass, mi = 1.0 for computationally efficiency. All variables
in the SPH model are given in consistent model units. The
viscosity term ηij is given by [21] as

ηij = 2µ
vij

ρiρjrij

∂W

∂rij
. (2)
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Fig. 1. Interaction potential.

We model surface tension using a particle-particle interaction
force

∑N
j=1 Fij [20]. The force consists of two superimposed

cubic spline kernels W1(|ri − rj |, h1) and W2(|ri − rj |, h2)
( [22]):

Fij =

 sij [AW1(r, h1) +BW2(r, h2)] |ri − rj | ≤ h

0 |ri − rj | > h,
(3)

such that a smooth and continuous function with a short-range
repulsive and long-range attractive part is created (see Fig.
1). The following parameters are used: A = 2.0, h1 = 0.8,
B = −1.0 and h2 = 1.0 with W1(|ri − rj | > 0.8, h1) = 0.
The strength of the force is independently controlled for fluid-
fluid and fluid-solid interactions by the parameter sij which
assumes values sfs (fluid-solid) and sff (fluid-fluid).

We obtain the density from the general field approximation

ρi =

N∑
j=1

mjW (|ri − rj |, h) (4)

and close the equation system by a van der Waals type equation
of state:

P =
ρkbmT

1− ρ bm
− a

m
ρ2 (5)

where kb is the Boltzmann constant, T is the temperature and a
and b are the van der Waals constants. Values for the constants
are kbT = 1.6, a = 3.0 and b = 1/3.

III. MODEL CALIBRATION

A. Surface Tension

In order to determine the surface tension we prescribe a
value for the fluid-fluid interaction force sff and obtain the
pressure through the Young-Laplace law:

σsph =
Req
2

∆P, (6)

where σsph is the surface tension, Req is the equilibrated
drop radius and ∆P is the pressure difference between drop
and airphase. We do not discretize the airphase, therefore the
pressure difference ∆P is equal to the drop pressure P0. As the
interaction forces do not contribute to the pressure obtained
from the equation of state we evaluate P0 using the Virial
theorem as shown by [1] and [23]:

P0 =
1

2dV

∑
i

∑
j

rijfij =
1

8r3virial

∑
i

∑
j

rijfij , (7)

where fij = midvi/dt and d = 3 for a three-dimensional
system. As the particles within distance 1h from the surface
suffer from a slight boundary deficiency we set rvirial = Req−
h. The first summation is carried out using all particles within
distance rvirial from the center of the droplet, while the second
sums over all particles. To exclude the boundary effect, we
set rvirial = Req − h. For a given value of ssf = 0.05 we
obtained a surface tension of σsph = 0.25 which is used for
all the shown simulations in this work.

B. Static Contact Angles

Given the fluid-fluid interaction force sff and and the
shape of the interaction potential the static contact angles
depend on the solid-fluid interaction force ssf . We studied
the dependence of the contact angle on the magnitude of ssf
as well as the model resolution by slowly equilibrating drops
on a smooth surface. For static conditions we relate our units
using the dimensionless Bond number:

Bo =
ρgV 2/3

σ
, (8)

where V is the volume of a droplet. Given the average model
density ρsph = 39.2, surface tension σsph = 0.25 a droplet
with Bo = 1 is simulated for different resolutions, i.e. varying
radii Req = 1.77 h (902 particles) to Req = 5.85 h (77993
particles) with volumes V = 23.3 − 839.0 h by adjusting the
gravitation acceleration to gsph = 7.82×10−4 − 7.17×10−4.
Droplets are slowly placed on the surface by gradually de-
creasing the gravitational acceleration and ssf .

Simulations yield contact angles which are practically in-
dependent of resolution over the whole range of solid-fluid
interaction forces from ssf = 0.001 to 0.05. Simulations in
this work use interaction forces between ssf = 0.01 to 0.05
corresponding to static contact angles of 110◦ to 25◦.
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Fig. 2. Droplets in a critical state before the onset of motion. Droplet radius is 4.82 h (Bo = 1.02) and static contact angles range from 60◦ to 110◦.

IV. CRITICAL CONTACT ANGLES

In addition to the static contact angle measurements we
conducted numerical experiments for droplets in a critical
state, i.e. at the verge of movement. Experimental data of [2]
and [24] suggests a dimensionless relationship between Bond
number and critical contact angles independent of the fluid-
solid configuration.

A drop under dynamics conditions can be characterized by
an advancing contact angle θA perpendicular to the direction
of motion and a receding contact angle θR at the droplet tail.
Here the Bond number is defined as:

Bo′ =
ρg(2R)2

σ
sin(α), (9)

where α is the inclination angle of the surface measured from
the horizontal. Contact angles around the perimeter of the drop
range from θmin to θmax during the transition from static
conditions to movement, However, as shown by [2] for several
fluid-substrate combinations and Bond numbers ranging from
0.0 to 3.0 the maximum angle θmax/θA ≈ 1.0 such that
θmax ≈ θA. Furthermore the minimum contact angles θmin
is shown to match the receding contact angle θR through
the transition, therefore we restrict our measurements of the
critical contact angles to θR and θA. Based on their laboratory
experiments [24] propose the following quadratic non-linear
relationship between θmin/θA and Bo′:

θR
θA

=
θmin
θA

= 0.01Bo′2 − 0.155Bo′ + 0.97. (10)

Our numerical experiments consist of several fluid-subtrate
configuration with static contact angles ranging from 60◦ to
110◦ which yield results in the range of Bo’ from 0.0 to 3.0
similar to the laboratory experiments. Drop sizes vary between
Req = 1.77 and 5.85 which corresponds to Bo′ = 0.14− 2.8
for a critical state. Gravitational acceleration is set to gsph =
0.000164 with droplets being carefully equilibrated on the
surface. We then slowly decrease the inclination angle by one
degree every 500 time steps to give drops enough time to
adjust and to be able to determine the exact onset of movement
and measure the contact angles (see Fig. 2).

The simulation results are consistent with the experiments of
[2] (see Fig. 3). We observe a slight deviation for higher values
of Bo’. As this is within the data variance of our experiments

and the laboratory experiments we cannot conclude if a
numerical insufficiency is responsible for the deviation.
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Fig. 3. Droplets in a critical state right before the onset of motion. A critical
state for large values of Bo’ can only be obtained from droplets with high
values of the solid-fluid interaction strength, i.e. low static contact angles.

V. TRANSIENT DROPLET DYNAMICS

Despite the complexity involved in hydrodynamics of tran-
sient droplets ( [25], [26], [27], [28]) simpler dimensionless
relationships help to calibrate the model to a variety of wetting
conditions encountered in highly heterogenous systems such
as fractured media. Here we presents our results of transient
droplet dynamics on dry and wet surfaces ( [29]). To verify
droplet dynamics over a wide range of static contact angles,
Bond numbers and Capillary numbers we conducted extensive
numerical experiments and applied the proposed dimensionless
scaling law of [3]:

Ca ∼ Bo sin(α)−∆θ, (11)

The Capillary number is defined as

Ca = µv/σ (12)
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Fig. 4. Example of results for static contact angles θ0 = 60◦ and θ0 = 80◦ and three viscosities. Scaling parameters are obtained using only droplets with
shapes that do not strongly deviate from the rounded or cornered shape (i.e. below the dashed lines).

where v is the droplet velocity and ∆θ is a perimeter-averaged
projection factor of surface tension. A useful extension of the
scaling has been proposed by [30] to apply results to various
fluid-substrate configuration:

Ca = γ Bo sin(α)−∆θ (13)

where γ is a dimensionless scaling parameter unique for every
fluid-substrate combination.

A. Dry Surfaces

The simulation domain has sizes x = 128 h, y = 64 h and
z = 16 h which corresponds to 45.7x22.8x5.7 mm in SI units.
Droplet sizes are varied in the range of 0.14 to 1.5 in terms
of the Bond number (nine droplet radii from 1.77 h to 5.85 h),
while surface inclinations range from 10◦ to 90◦ yielding 81
values Bo·sin(α) and Ca values for every static contact angle
θ0. The viscosity assumes three values (µsph = 0.01, 0.03, 0.1)
to cover the wide range of Reynolds numbers observed in
water-rock systems.

Droplet velocities are measured when the maximum velocity
is reached by evaluating the change of droplet front position
in time ∆x/∆t where ∆t is chosen over a linear interval.
The results show that the linear relationship holds over wide
ranges of viscosities and static contact angles (see Fig. 4),
however, a few exceptions have to be considered when the
assumptions for the scaling are violated: (1) Droplets whose
shape deviates strongly from the rounded or cornered shape
(i.e. assume a rivulet shape with strong tailing) slow down due
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Fig. 5. Development of trailing films on initially dry surfaces for varying
strength of the solid-fluid interaction strength ssf . Shown surfaces are tilted
at an angle of 90◦.
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Fig. 6. Maximum Reynolds numbers and flow regimes for all investigated
static contact angles (dry and prewetted conditions). Trailing films appear
more pronounced at higher Re and ssf values.

to increased surface area interaction and (2) for high values
of ssf , i.e. low static contact angles, droplet volumes are not
constant as they leave behind trailing films (see Fig. 5)

B. Prewetted Surfaces

In order to investigate the effect of prewetted surfaces
on droplet dynamics and the scaling we set up a second
simulation with particles covering the surface as a flat film.
The film thickness is chosen equal to the thickness of trailing
films for each strength of ssf under the assumption that this
represents the maximum fluid capacity for the given fluid-
substrate system. At the chosen model resolution continuous
trailing films are stable for ssf = 0.04 and 0.05. Films
applied to systems with higher static contact angles results
in a Marangoni-like breakup of films and are not considered
here.

The film thickness varies between 0.3-0.5 h corresponding
to 107-178µm. This value is in the right order of magnitude (
[12], [14], 2-70µm and [7], 0.9-40µm), however, it is obvious
that higher SPH resolutions are need to fully resolve these
length scales.

Fig. 6 gives a comprehensive overview of the results ob-
tained from the simulations in terms of maximum Reynolds
numbers (with respect to each static contact angle and
all droplet radii) and flow regimes encountered, where the
Reynolds number is defined as:

Re =
ρ v V (1/3)

µ
. (14)

Prewetted surfaces yield velocities which can be increased
by a factor of three indicating the importance of adsorbed films
and adequate integration of such effects into the SPH model
when studying flow in fractured media.

VI. RANDOM THERMAL FLUCTUATIONS

The effect of random noise introduced to particle systems
has been demonstrated for example by [31] (DPD) and [32]
and [33] (SDPD). Here we want to investigate the influence
of thermal noise added to the momentum equation via the
fluctuation-dissipation theorem [34]:

dvi

dt
=
∑
j

1

mj
σijdWeij∆t

−1/2 (15)

where dW is the traceless symetric part of a matrix of
independent random numbers with variance one and mean zero
and eij is a normalized vector. σij can be obtained through the
fluctuation-dissipation theorem by comparing the irreversible
part of the dynamics:

σij =

√
−8T ∗µ

(
1

ρiρj

)
1

rij

∂W

∂rij
(16)

The added random forces act as a thermostat to keep the
whole system at a constant kinetic temperature, i.e. energy
dissipation through viscous forces until the system freezes is
prevented. Fig. 7 shows the development of the kinetic energy
of an infinite domain of size x = y = z = 4 h after introducing
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Fig. 7. Kinetic energy of the periodic system for temperatures T ∗ =
1.0×10−6, 2.0×10−6, 3.0×10−6, 4.0×10−6, 5.0×10−6 (from bottom
to top).
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the thermal energy T ∗. All fluid properties are the same as
described previously.

After reaching a constant kinetic energy we determine the
diffusion coefficient of the system by means of the positional
variance σ2

r over time (see Figs. 8 and 9) defined as:

D =

[
1

N

N∑
i=1

(ri(t)− ri(t0))
2

]
/∆t (17)

We use the dimensionless Schmidt number Sc

Sc =
µ

ρD
(18)

to relate the diffusion coefficients in model units to real units.
Schmidt numbers for water at average subsurface tempera-
tures of 6 ◦C to 15 ◦C range from about 700 to 1500 which
corresponds to a range of T ∗ from 2.0×10−6 to 5.0×10−6. In
order to investigate the effect of additional thermal noise on
the droplet dynamics we introduce a constant temperature of
T ∗ = 3.0×10−6 to the simulations as shown in section IV to
determine critical contact angles with added random forces.

Results indicate a slightly better fit to the data of [2],
especially for lower static contact angles, (see Fig. 10).
However, given the the relatively high data variance results
should be interpreted with caution. The current simulations
run at a rather coarse resolution, considering the length scales
associated with thermal fluctuations, i.e. the mean free path of
molecules. Nevertheless, surface interactions might be affected
by thermal fluctuations when using higher resolutions which
is scope of future research.

VII. CONCLUSION

We applied a three-dimensional free-surface SPH model
including the effects of surface tension and thermal fluctuation
to simulate droplet flow on smooth surfaces. It is shown
that our model can capture the behavior of droplets over
a wide range of fluid-solid configurations. Critical contact
angles are shown to reproduce laboratory experiments and
transient droplet dynamics on dry surfaces follow a linear
scaling. We investigated the limitations of the SPH model,
e.g. the occurence of trailing films for static contact angles
below 60◦ and strong deviations in droplet shape. Prewetted
surfaces are shown to increase droplet velocities and display
the importance of such effects for percolation of water through
fractured media. Finally we have investigated the influence of
random thermal fluctuations added to the momentum equations
via the fluctuation-dissipation theorem and show that critical
contact angles are possibly affected.
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Fig. 10. Critical contact angles with random thermal fluctuations.
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