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Abstract—We propose a novel Smoothed Particle Hydrody-
namics (SPH) discretization of the fully-coupled Landau-Lifshitz-
Navier-Stokes (LLNS) and advection-diffusion equations. The
accuracy of the SPH solution of the LLNS equations is demon-
strated by comparing the scaling of velocity variance and self-
diffusion coefficient with kinetic temperature and particle mass
obtained from the SPH simulations and analytical solutions. To
validate the accuracy of the SPH method for the coupled LLNS
and advection-diffusion equations, we simulate the interface
between two miscible fluids. We study the formation of the so-
called giant fluctuations of the front between light and heavy
fluids with and without gravity, where the light fluid lays on
the top of the heavy fluid. We find that the power spectra of
the simulated concentration field is in good agreement with the
experiments and analytical solutions. In the absence of gravity
the the power spectra decays as the power -4 of the wave number
except for small wave numbers which diverge from this power law
behavior due to the effect of finite domain size. Gravity suppresses
the fluctuations resulting in the much weaker dependence of the
power spectra on the wave number. Finally the model is used
to study the effect of thermal fluctuation on the Rayleigh-Taylor
instability.

I. INTRODUCTION

In the presence of a macroscopic concentration gradient
(e.g. the concentration gradient across the front separating
two miscible fluids), non-equilibrium systems are known to
relax to an equilibrated state via diffusion [1]. On macroscopic
scales diffusion is often approximated by Fick’s law [2]. How-
ever, on mesoscopic or molecular scales thermal fluctuations
become a significant part of the hydrodynamics and greatly
influence mixing. Thermal fluctuations may have a significant
impact on miscible fluids close to a hydrodynamic instability
such as Rayleigh-Taylor and Kelvin-Helmholtz instabilities.
For example, thermal fluctuations produce anomalously large
fluctuations of the front separating two miscible fluids (with a
light fluid overlaying a heavy fluid, [3]).

To capture the effect of thermal fluctuations on the fluid flow
on the hydrodynamic scale, [4] proposed a stochastic form of
the Navier-Stokes equations that is commonly referred to as
the Landau-Lifshitz-Navier-Stokes (LLNS) equations. In the
LLNS equations, a random stress is added to the Navier-Stokes
equations, and the strength of the random stress is related
to the viscous stress via the fluctuation-dissipation theorem.

Similarly, a random mass flux is added into the advection-
diffusion equation to consistently include the effect of thermal
fluctuations on Fickian diffusion. The most common numeri-
cal techniques for directly solving the LLNS and stochastic
diffusion equations are based on the finite-volume method
[5]. Stochastic Lattice-Boltzmann models [6] and smoothed
dissipative particle dynamics (SDPD) [7] have been used to
model fluid flow in the presence of fluctuations, but these
method have not been derived via the direct discretization
of the LLNS equations. For example, SDPD is obtained by
adding a random force into the SPH discretization of the
(deterministic) NS equations, and relating the magnitude of
the random force to the viscous SPH force via the GENERIC
framework [8].

Here we use the SPH method to solve stochastic partial
differential equations including the LLNS and advection-
diffusion equations. With regard to the LLNS equations, the
SPH discretization provides an alternative to SDPD for intro-
ducing fluctuations in the SPH flow equations. It also provides
a consistent framework for discretizing other stochastic conser-
vation equations. The accuracy of the solution of the stochastic
diffusion equation is verified by comparing moments of a
conservative tracer with the analytical solution. Finally, we use
the coupled LLNS and advection-diffusion equations to study
the effect of fluctuations on the diffusive front in the absence
and presence of gravity. We analyze the spatial correlation
of the diffusive front geometry and compare the results with
the theoretical predictions. Furthermore the classical Rayleigh-
Taylor instability is simulated to verify the accuracy of the
stochastic SPH model.

II. STOCHASTIC FLOW AND TRANSPORT EQUATIONS

We study the isothermal stochastic Navier-Stokes equations
including the continuity equation

Dρ

Dt
= −ρ (∇ · v) , (1)

the stochastic momentum conservation equation

Dv

Dt
= −1

ρ
∇P +

1

ρ
∇ · τ + g +

1

ρ
∇ · s (2)
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and the advection-diffusion equation

DC

Dt
=

1

ρ
∇ · (ρDF∇C). (3)

Here D/Dt = ∂/∂t + v ·∇ is the total derivative and ρ, v,
P and g are the density, velocity, pressure and body force,
and DF is the Fickian diffusion coefficient. The components
of the viscous stress τ are given by

τ ik = µ

(
∂vi

∂xk
+
∂vk

∂xi

)
, (4)

where µ is the (shear) viscosity and the bulk viscosity is
assumed to be equal to 2

3µ. C = C̃/Cmax is the normalized
mass fraction of solute varying from zero to one ( C̃ is the
mass fraction and Cmax is the maximum mass fraction). In
the following, we refer to C as concentration. The fluctuations
in velocity and concentration are caused by the random stress
tensor

s = σξ (5)

where ξ is a random symmetric tensor and σ is the strengths
of the corresponding noise The random stress is related to the
viscous stress by the fluctuation-dissipation theorem [4]. For
incompressible and low-compressible fluids, the covariance of
the stress components is:

sik(r1, t1)slm(r2, t2) = σ2δ(r1 − r2)δ(t1 − t2)

σ2 = 2µkBTδ
imδkl, (6)

where kB is the Boltzmann constant, T denotes the tempera-
ture, δ(z) is the Dirac delta function and δij is the Kronecker
delta function. In general, the density and viscosity of the fluid
are functions of the solute concentration C.

III. SPH DISCRETIZATION

In this work we use a fourth-order weighting function to
describe W [9] and obtain the particle number density as

〈〈ni〉〉 =

N∑
j=1

W (|r − rj |, h), (7)

An SPH discretization of the Navier-Stokes Eqs. (1) and (2)
can be obtained as:

D(mivi)

Dt
= F i (8)

F i = −
N∑
j=1

(
Pj
n2j

+
Pi
n2i

)
rij
rij

dW (rij , h)

drij

+

N∑
j=1

5(µi + µj)

ninj

(vij · rij)
r2ij

rij
rij

dW (rij , h)

drij

+mig

+

N∑
j=1

(
sj
n2j

+
si
n2i

)
· rij
rij

dW (rij , h)

drij
. (9)

Following [9] and [10] a numerical discretization of the
convection-diffusion equation is obtained as

D(miCi)

Dt
=

N∑
j=1

(DF
i mini +DF

j mjnj)(Ci − Cj)
ninj

(
1

rij

dW (rij , h)

drij

)
.

(10)

The particle positions are evolved in time according to

dri
dt

= vi. (11)

Here, vi is the velocity of particle i, t is time, Pi is the fluid
pressure at ri, si is the random stress at ri, rij = |rij |,
rij = ri−rj , and vij = vi−vj . For computational efficiency,
we set h to unity and locate particles within the interaction
range using a common link-list approach with an underlying
cubic-lattice of size h = 1.0.

To close the system of SPH equations we employ a common
equation of state (EOS) in the form

Pi = c2mini, (12)

where c is the artificial speed of sound, which is chosen
such that the desired compressibility of the system is ob-
tained. Depending on application, this EOS is often applied
to incompressible systems [11]–[13], where a choice of c,
based on dimensionless analysis [14], can yield the quasi-
incompressible approximation of an incompressible fluid.

In general, mi and µi depend on Ci. In SPH, the mass
fraction can be defined as C̃i = ms

i/mi = ms
i/(m

0
i + ms

i ),
where mi is the total mass of particle i (mass of the solution
carried by particle i), ms

i is the mass of solute, and m0
i is the

mass of solvent carried by particle i. Then, the dependence of
mi on Ci can be expressed as

mi = m0
i +miC̃i = m0

i +miCmaxCi. (13)

In the following we assume that m0
i is constant (i.e. does

not change as result of diffusion), C̃ << 1 (dilute solution),
the mass of solute carried by particle i is ms

i = m0
i C̃i and

mi = m0
i + κCi (14)

where κ = m0
iCmax is a constant. Then Eq. (10) can be

linearized as
DCi
Dt

=

1

m0
i

N∑
j=1

(DF
i mini +DF

j mjnj)(Ci − Cj)
ninj

(
1

rij

dW (rij , h)

drij

)
.

(15)

For the sake of simplicity we neglect the dependence of the
viscosity on the fluid compositions.

In SPH, the fluid domain is discretized with fluid particles
with volume ∆Vi = 1/ni and time integration is done with
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time step ∆t. Therefore, we can write the lm-component of
the random stress tensor at ri as:

slmi =

√
2µkBTδlm

∆Vi∆t
ξlmi =

√
2µkBTδlmni

∆t
ξlmi , (16)

where ξlmi is a unitless random number from a uniform or
normal distribution with a unit variance. No summation over
repeating indices is assumed in Eq. (16).

In order to maintain the kinetic energy of the modeled sys-
tem independent of resolution (number of particles), and to re-
cover the appropriate scaling behavior of velocity fluctuations
with temperature, we follow the work of [15] and introduce
scaling of the Boltzmann constant, kB . Consider a fluid system
modeled with two different resolutions corresponding to N∗

and N number of particles, respectively, where N∗ is the
number of particles in the referenced model. We assume that
the Boltzmann constant in the system with N∗ particles is kB ,
and in the system with N particles is k̃B . Equating the total
kinetic energy of the models with these two resolutions leads
to 3

2N
∗kBT = 3

2Nk̃BT . Noting that the average volume of
particles is inversely proportional to the number of particles
we arrive to the scaling law

k̃B =
V

V ∗
kB , (17)

where V is the average volume of particles in the system with
N particles and V ∗ is the average volume of particles in the
system with N∗ particles. Next, we rewrite Eq. (16) as

slmi =

√
2µV ∗k̃BTδlmni

Vi∆t
ξlmi , (18)

where we replace V with Vi = 1/ni, the volume of particle
i. We numerically determined that the correct hydrodynamics
is obtained with V ∗ = 2h3. Therefore, we set the expression
for stress to:

slmi =

√
4h3µT ∗δlmn2i

∆t
ξlmi , (19)

where T ∗ = k̃BT .
To integrate the SPH Eqs. (8) and (11), an explicit “velocity-

Verlet” algorithm [16] is employed and time step stability of
the solution is ensured by satisfying the time step constraints
of [11].

IV. VALIDATION OF THE SPH METHOD FOR LLNS
EQUATIONS

We study the accuracy of the SPH solution of the LLNS
equations by comparing thermodynamic quantities such as
kinetic temperature and velocity variance obtained from the
SPH simulations and analytical solutions.

A. Convergence of SPH solution of the LLNS equations

First, we study the convergence behavior of the SPH solu-
tion of the stochastic NS equations with respect to spatial res-
olution. The normalized kinetic temperature T ∗kin = k̃BTkin
is computed as

T ∗kin =
1

3

N∑
i=1

mi(δv
2
x,i + δv2y,i + δv2z,i), (20)

where δvk,i = vk,i − 〈vk〉 (k = x, y, z) are the fluctuations
of k-component of the velocity of particle i around the
mean velocity in k-direction, 〈vk〉 = 1

N

∑N
i=1 vk,i. In our

simulations there are no sources of energy other than random
fluctuations and the kinetic temperature of the system should
theoretically be equal to the temperature that is prescribed in
Eq. (6), i.e. T ∗kin/T

∗ should be equal to one.
In Fig. 1 we plot T ∗kin/T

∗ versus the equilibrium density
neq . In the simulations shown in this figure, the equilibrium
mass density is kept constant (ρeq = 30) and the mass of the
particles is set to mi = m0 = ρeq/neq . It is important to note
that the speed of sound should scale with mass as

c ∼

√
k̃BT

m0
=

√
2h3ρeqT ∗

m2
0

. (21)

To obtain this scaling in the SPH model, we start with the
expression for the pressure variance derived in [4]:

〈δP 2〉 =
ρeqkBTc

2

∆V
, (22)

where δP is the fluctuation of pressure around the mean
pressure. Noting that in the above equation ∆V = 1/neq ,
δP = c2miδn (δn is the fluctuation of density around neq)
and ρeq = mineq and replacing kB with k̃B we obtain the
scaling law for the speed of sound

c = β

√
2h3ρeqT ∗

m2
0

, (23)

where β is the inverse of the coefficient of variation of the
particle number density,

β =
neq√
〈δn2〉

. (24)

This results in the EOS

Pi = T ∗2h3neqniβ. (25)

We numerically determined that to recover the correct
hydrodynamic behavior, β should be approximately equal to
5.5. A significantly smaller β results in a high compressibility
of the fluid and may lead to numerical instability. For higher β
(i.e. for less compressible fluids), the thermodynamic variables
become dependent on the speed of sound. Therefore, in all
our simulations we set β = 5.5. Figure 1 shows T ∗kin/T

∗

for T ∗ = 0.001, 0.005, 0.01, 0.05. For all considered tem-
peratures, convergence is reached at a number density of
about neq = 20 with the error being less than 2%. Kinetic
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temperatures obtained from simulations using an SDPD im-
plementation of the stochastic force are slightly higher with a
maximum error of about 4%.
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Fig. 1. Scaling of kinetic system temperature with changes in resolution
and changes of the mass density ρ0 where µ = 10. Convergence is reached
for neq ≥ 20. Gray markers correspond to the kinetic temperatures for the
SDPD implementation of the stochastic stress at neq = 27.

It follows from Eq. (20) that for all SPH particles having
the same masses mi = ρ0/neq , the velocity variance σ2

v =
1
3

∑N
i=1(δv2x,i + δv2y,i + δv2z,i) should scale as

σ2
v =

T ∗

m0
=
neqT

∗

ρ0
, (26)

i.e. that for a fluid with a given mass density ρ0, the velocity
variance is inversley proportional to the mass of the SPH
particles or linearly proportional to the resolution neq .

B. Self-diffusion coefficient

The coefficient of mechanical diffusion (describing the
”diffusion” of the SPH particles), i.e. the self-diffusion coef-
ficient has a similar scaling behavior as the velocity variance.
For example, for an SDPD model with a slightly different
discretization of the viscous force than used in this work, the
self-diffusion coefficient was obtained as [17]:

D =
τkBT

3
= ζ

neqh
2kBT

µ
, (27)

with ζ = 1
12 . For our SPH model, we numerically determined

the value of ζ = 0.045.
To validate the scaling of D, we compute the diffusion

coefficient from SPH simulations over the same range of
number densities and temperatures as in the previous example.

Figure 2 shows the resulting scaling of the diffusion coef-
ficients with changing resolution, which agrees with Eq. (27).

The same correct linear scaling for the diffusion coefficient
is obtained for the whole temperature range considered in the
simulations.
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Fig. 2. Scaling of the stochastic diffusion coefficient with increasing
resolution, where Dξ0 is the diffusion coefficient at neq = 15 for each
temperature T ∗. Dξ is obtained by linear regression of MSD/∆t where MSD
> 1.0h.

V. SPH MODEL FOR HIGHLY DILUTED SOLUTIONS

Here we study the enhancement of Fickian diffusion by
thermal fluctuations in non-equilibrium systems. In this section
we study highly diluted solutions. To isolate the effect of
stochastic fluxes in Eq. (3) we assume that the advection
velocity is zero and only solve Eq. (3). As shown numerically
in [18], the effective diffusion coefficient Deff consists of a
deterministic Fickian part DF and a stochastic contribution
Dξ: Deff = DF + Dξ. In turn, Dξ is a result of the
random advection (which is characterized by the self-diffusion
coefficient in Eq. (27).

In order to study the effect of diffusion enhancement we
simulate a spherical plume with radius 3h and an initial
uniform concentration C0 = 1.0 surrounded by a solution
with zero concentration. We run the simulations with four
different temperatures (T ∗ = 0.001, 0.005, 0.01 and 0.05), the
ratio DF /Dξ ranging from 2 − 10 and the value of Dξ is
estimated from Eq. (27).

In order to study the accuracy of the SPH solution of the
stochastic and deterministic advection-diffusion equations we
solve: (1) the deterministic diffusion equation in the absence
of advection; (2) the coupled LLNS and stochastic advection
equation (DF = 0); and (3) the coupled LLNS and stochastic
advection-diffusion equations. In the first case we compute
the resulting diffusion coefficient and compare it with the
prescribed Fickian diffusion coefficient. In the second case
we numerically compute Dξ. Once the deterministic solution
is verified and Dξ is evaluated, we compute the effective
diffusion coefficient in the third simulation as

Deff = Dξ +DF (28)

and compare this value with the effective diffusion coefficient
obtained from the SPH solution of the LLNS and stochastic
diffusion equation with the corresponding DF and T ∗.
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The results of the simulations indicate a very good agree-
ment between Deff obtained from Eq. (28) and the solution of
the full stochastic diffusion equation (see Fig. 3). The relative
errors are between 0.8% and 2.5%.
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Fig. 3. Accuracy of the diffusion enhancement for different ratios of
DF /Dξ . Diffusion coefficients Dξ + DF are obtained from simulations
where only Fickian diffusion is active or where only thermal fluctuations
occur and then compared to simulations where both are present.

VI. SPH SOLUTION OF THE COUPLED LLNS AND
STOCHASTIC DIFFUSION EQUATIONS

Here we use the coupled stochastic SPH model to study the
effect of gravity on thermally enhanced diffusive transport.
Specifically, we study perturbations of a front between two
miscible fluids due to random stresses and fluxes in the
momentum and advection-diffusion equations. In the coupled
model we solve the LLNS and stochastic advection-diffusion
equations with the mass of SPH particles (and density of the
solution) depending on C according to Eq. (14).

We simulate a three-dimensional domain filled with the
solution of a conservative species C. We consider two cases:
(1) initial C is zero in the upper half of the domain and one
in the lower half of the domain; and (2) initial C is one in
the upper half of the domain and zero in the lower half of the
domain. In the first case we use the SPH model to study how
gravity suppresses perturbations of the front (also known as
giant fluctuations). In the second case we use the stochastic
SPH model to study the effect of random stresses and diffusive
fluxes on the development of the Rayleigh-Taylor instability.

In both study cases, the domain size is Lx = Ly = 16h
and Lz = 8h. The upper and lower horizontal boundaries are
assumed to be impermeable and all the vertical boundaries are
treated as periodic.

The solvent mass for all particles is set to m0
i = m0 = 1

and mi is computed according to Eq. (14). The parameter κ
in Eq. (14) is related to the Atwood number, A, via

A =
m(C = 1)−m(C = 0)

m(C = 1) +m(C = 0)
=

κ

2m0 + κ
, (29)

where m(C = 1) and m(C = 0) are the masses of particles
with C = 1 and C = 0, respectively.

A. Giant fluctuations

Here we consider two scenarios: (1) with gravity; and (2)
in the absence of gravity. In both scenarios, the solution with
C = 0 (“light fluid”) lies on top of the solution with C = 1
(“heavy fluid”), the Atwood number is At = 0.83 (κ = 10)
and the temperature is set to T ∗ = 0.001. In the first scenario,
the system is initially equilibrated, i.e. brought to hydrostatic
condition by solving only the NS equations. C = 0 and 1
are maintained in the upper and lower part of the domain,
respectively, during the equilibration process. In the absence of
gravity, there is no need to pre-equilibrate the particle system
in the simulations of the second scenario. For each scenario
we conduct three simulations: (1) no Fickian diffusion, i.e.,
DF = 0.0; (2) DF = 0.001; and (3) DF = 0.005.

Figure 4 shows the cross-sections of the resulting concentra-
tions at time t = 414 for each of the six simulations described
above. Subfigures in the top row show the distribution of
C obtained from the simulations in the absence of gravity,
where one can clearly see the presence of giant fluctuations
or perturbations of the front. Subfigures in the bottom row
show the distribution of C obtained from the simulations with
gravity. It can be seen that gravity significantly reduces front
perturbations for all considered values of DF , but the effect of
gravity becomes less pronounced with increasing DF . As DF

becomes significantly larger than Dξ (or when T ∗ → 0), the
stochastic diffusion reduces to a deterministic diffusion and
thus fluctuations completely disappear.

1) Structure factor: In the absence of gravity, the nonequi-
librium concentration fluctuations are known to exhibit a
characteristic q−4 decay of the powerspectrum [19]. However,
this can only be observed over a limited range of wavenumbers
due to several effects that relax the fluctuations and eliminate
the scale-invariant character. At low wavenumbers the primary
reason is a finite size of the domain [20]. Gravity dampens
the fluctuations leading to a much weaker dependence of the
power spectrum on wavenumber [21].

We obtain the power spectrum S(q) from simulations
similar to the ones described in Sec. VI with the domain size
Lx = Ly = 32h and Lz = 16h, temperature T ∗ = 0.003
(which corresponds to a Schmidt number of Sc ≈ 1000),
κ = 10. In these simulations, the light fluid (C = 0) lies
on top of the heavy fluid (C = 1). According to [22], in
the absence of gravity the scale-invariant characteristics of the
power spectrum are independent of the fluid configuration and
concentration gradient and scale as

S(q)/S∞ = (q4 +Bq2 + Λ4)−1. (30)

Here B = Λ tanh(Λ/2) [2Λ tanh(Λ/2)− 4] and Λ is a
fitting constant. To normalize the data, the asymptotic value of
S∞ = limq→∞ S(q)q4 is obtained from a fit of the linear part
of S(q)q4 which corresponds to fitting a power-law function
S∞q−4 to S(q).
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Fig. 4. Cross-section of the interface between a heavy fluid and a light fluid on top at time t = 414. Temperature is T ∗ = 0.001, κ = 10, µ = 10. (Upper
row) In the presence of gravity with same increase of Fickian diffusion from left to right. (Lower row) Without gravity and increasing Fickian diffusion from
left to right.

Figure 5 shows the resulting power spectra scaled onto the
universal curve according to Eq. (30) with Λ = 2.33 and
the theoretical scaling for bounded and unbounded conditions.
This confirms the scale-invariant nature of the fluctuation
front and the saturation due to finite-size effects at low wave
numbers. The power spectrum of the interface in the presence
of gravity clearly shows the saturation of the divergence at
low wave numbers.

10
0

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

q (L
−1
)

S
(q
) 
/ 
S
∞

 

 

t = 1800, T
*
 = 0.003, g = 0

t = 1800, T
*
 = 0.003, g = 0.002

Theory (Λ = 2.33, Eq. 30)
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Fig. 5. Power spectra obtained from the remapped concentration fields at
t = 1800 including the effect of gravity.

B. Rayleigh-Taylor instability

Here we study the effect of thermal fluctuations on the
development of the Rayleigh-Taylor instability, an unstable
displacement of a light (C=0) fluid with a heavy fluid (C=1)
under the action of gravity. In the considered cases, the
Atwood number is A = 0.6 (κ = 3), gravity is g = 0.002,
viscosity is µ = 10 and the number density is neq = 27.
The domain size is Lx = 16h, Ly = 8h and Lz = 32h.
The no-flow boundary condition is imposed in the z direction
by placing a layer of boundary particles at the bottom of the
domain. Periodic boundary conditions are imposed in the x
and y directions. To initiate the Rayleigh-Taylor instability
we perturb the interface according to

z(x) = z0 + cos(πx/Lx)η0, (31)

where z0 = 0.5Lz + 1 with the initial amplitude η0 = 0.5 and
the wavelength λ = 16h.

This yields a pseudo-2D simulation setup. In order to bring
the system to a hydrostatic equilibrium we solve the LLNS
equations including thermal fluctuations (no Fickian diffusion)
and constantly reassign the appropriate concentrations above
and below the interface defined by Eq. (31). In the final
simulations we investigate three cases with the same effective
diffusion coefficient Deff = 0.00036 (Sc ≈ 1000): (1)
Dξ = 0.00012, DF = 0.00024, (2) Dξ = 0, DF = 0.00036
and (3) Dξ = 0.00012, DF = 0.00024 to compare the time
evolution of the diffusive interface.

Figure 6 shows the resulting evolution of the unstable front
and Fig. 7 displays the corresponding interface amplitude for
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Fig. 6. Rayleigh-Taylor instability at a Schmidt number of Sc ≈ 1000 (Deff = 0.00036), At = 0.6 (κ = 3), gravity g = 0.002, viscosity µ = 10 and
number density neq = 27. Domain size is Lx = 16h, Ly = 8h and Lz = 32h. (Upper row) Only fickian diffusion with DF = 0.00036. (Lower row)
DF = 0.00024 and Dξ = 0.00012, T ∗ = 0.002.

both the stochastic and deterministic cases. In general, both
solutions agree well with the analytical solutions of [23] and
[24] for early times (t . 300) and with the late time behavior
given by [25] (t & 300), where aq = 0.035. This is in agree-
ment with the wide range of aq values that have been reported
in literature [26] and lie between 0.01 and 0.08. Figure 7
(right panel) shows that the front in the stochastic simulation
propagates faster, especially at late times. The rate of the
front perturbation growth is proportional to the concentration
time. The coefficient of Fickian diffusion is smaller in the
stochastic model (DF < Deff ) than in the deterministic model
(DF = Deff ) and, as a result, the concentration gradients
across the interface are higher in the stochastic simulation than
in the deterministic simulation, which can be seen in Fig. 6.
Therefore, the front perturbation grows faster in the stochastic
simulation than in the deterministic simulation. Simulations
using the SDPD implementation display a slightly slower
development of the front growth at late times compared to
the LLNS-SPH simulations. This is most likely caused by the
difference in kinetic temperatures (about 4%, see Fig. 1) as
development of vortices rolled up along the tail is favored and
thus leading to higher drag forces on the perturbation front at
late times.

VII. CONCLUSION

We presented a novel, Smoothed Particle Hydrodynamics
based, method for solving coupled LLNS and stochastic
advection-diffusion equations. It is shown that the resulting
stochastic SPH model produces a correct scaling behavior
of thermodynamic quantities, such as velocity variance and
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Fig. 7. Simulations of the Rayleigh-Taylor instability with same effective
diffusion Deff = 0.00036 at Schmidt number Sc ≈ 1000 and g = 0.002
and the corresponding simulations using the SDPD implementation. The
solution of [23] and [24] have been derived for early times. In contrast
the analytical solution of [25] is valid for late times and employs the αq
calibration parameter which has been reported by various lab and numerical
experiments to lie in a range between 0.01 and 0.08 [26] (here aq = 0.035).

self-diffusion coefficient. To investigate the effect of thermal
fluctuations on diffusive mixing we (1) simulated diffusion of
a plume and demonstrated the accuracy of the SPH model with
an error of less than 2%. (2) The role of thermal fluctuations on
the evolution of a diffusive interface between a light fluid lying
on top of a heavy fluid has been demonstrated. In agreement
with recent laboratory experiments and theoretical consider-
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ations, we demonstrated (3) that in the absence of gravity
the SPH model recovers the characteristic q−4 divergence of
the interface power spectrum and its scale-invariant nature.
Also in agreement with previous studies, our results show that
gravity reduces the perturbations of the miscible front. Lastly
(4), we used the stochastic SPH model to study the effect
of thermal fluctuations on the development of the Rayleigh-
Taylor instability. We found that random thermal fluctuations
slightly accelerate the development of the instability. In the
stochastic SPH model, mixing of two miscible fluids results
from mechanical mixing of two fluids due to random advection
and diffusive mixing. In the standard deterministic description
(based on the Navier-Stokes and advection-diffusion equation)
the mixing is treated as an effective diffusion process. There-
fore, the deterministic model produces smaller concentration
gradients across the front separating two miscible fluids, which
slows the development of the Rayleigh-Taylor instability.
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