
Validation of massively parallel free-surface SPH
simulations of gravity-driven flow and partitioning

dynamics at complex fracture intersections
Jannes Kordilla
Torsten Noffz

Department of Applied Geosciences
University of Goettingen

Goettingen, Germany
jkordil@gwdg.de

Alexandre Tartakovsky
Computational Mathematics Group

Pacific Northwest National Laboratory
Richland, USA

Alexandre.Tartakovsky@pnnl.gov

Abstract—Flow velocities of water in porous geological media
generally do not exceed a few millimeters per day. However,
tectonic stresses commonly induce the formation of disconti-
nuities, i.e. fractures, which allow much higher flow velocities.
In the case of vertical, gravity-driven flows, this leads to a
pronounced deviation from classical volume-effective descriptions
and complicates the prediction of water movement for example
in the context of nuclear waste repository sites, mining industry
and in general water resources management. On fracture-scales
the spatial and temporal distribution of flow modes and its
influence on travel time distributions is still not very well un-
derstood. The complex interplay of flow modes such as droplets,
rivulets, turbulent and adsorbed films and its relation to the
geometrical properties of the system is difficult to model and
requires efficient numerical methods. We conducted laboratory-
scale percolation experiments of multiphase (free-surface) flow
through synthetic fracture systems. The setup allows us to obtain
travel time distributions and identify characteristic flow mode
distributions on wide aperture fractures intercepted by horizontal
fracture elements. The effect of flow mode formation on fracture
partitioning dynamics is demonstrated.

I. INTRODUCTION

Fractured porous media are one of the the most challeng-
ing system to study in terms of saturated and specifically
unsaturated (that is, multiphase flow in the presence of an
airphase) flow and transport dynamics. The highly non-linear
behavior of dependent variables in space and time and various
interactions of scale-dependent components clearly qualify
such media as complex systems [1]. Understanding and pre-
dicting unsaturated flow dynamics in fractured media is of high
importance for various applications. Up to 75% of the world-
wide aquifers [2] consist of fractured and karstified aquifers
and therefore are an important target for water resources
management and vulnerability assessment [3]. Geotechnical
applications such as tunneling, mining, construction of damns
and landfills heavily depend on a thorough characterization
of flow and pressure fields to warrant long-term stability
of the respective structures [4], [5]. Furthermore, the safety
of potential subsurface nuclear waste disposal sites heavily
depends on a clear understanding of flow and transport through

the overlying unsaturated (vadose) zone and potential leakage
caused by connectivity to fracture networks e.g. [3], [6].

However, on fracture and fracture-network scales unsatu-
rated flow and transport through geological media are still
poorly understood, mainly due to the missing insight into the
detailed flow processes. Small-scale laboratory experiments
for gravity-driven unsaturated flow are rarely carried out and
often exhibit erratic or chaotic flow dynamics e.g. [7]–[10].
Flow modes in general evolve with increasing flow rates from
thin adsorbed films over droplets and rivulets to wavy surface
films [11], [12] and may coexist. Consequently results are
difficult to cast into a meaningful framework without the help
of additional numerical modeling. This especially concerns the
complex flow dynamics at fracture intersections, which act as
a neuralgic point as they (1) control the overall connectivity
of fracture networks [13] (2) the partitioning behavior in
between connected fracture elements [10] and ultimately (3)
the distribution of flow modes on fracture surfaces, which in
turn affect the interaction between porous matrix and fracture
e.g. [14], [15].

Numerical models for this class of fluid flow problems
have to resolve various demanding properties, such as the
complex evolution of fluid-air interfaces, formation of sin-
gularities (e.g. droplet breakups), flow mode switching, dy-
namic contact angles and complex solid geometries of rough
fracture surfaces. Lagrangian methods such as SPH, dissipa-
tive particle dynamics (DPD) or molecular dynamics (MD)
provide a meshfree interpolation of the governing partial
differential equations. Among these three methods SPH can
be considered a macroscopic method as it commonly relies
on Navier-Stokes continuum description of the flow field.
Due to the properties of the Lagrangian framework, SPH
provides several advantages, specifically in the case of free-
surface flow dynamics: (1) Momentum, mass and energy are
explicitly conserved, (2) multiphase interfaces are explicitly
represented by individual particles and do not require front-
tracking algorithms, (3) free surfaces (fluid-gas interfaces) can
be easily modeled, thus saving computational resources, (4)
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physical phenomena such as surface tension naturally arise
from pairwise particle interactions and (5) viscosity can be
efficiently prescribed without non-linear advection terms in
the momentum conservation equation.

In this work we employ a highly parallelized SPH code
that we implemented within the LAMMPS (Large-scale
atomic/molecular massively parallel simulator, [16], [17])
framework. In its original form LAMMPS has been developed
for MD simulations, however, due to the similarities between
SPH and MD in terms of the numerical algorithms (e.g.
particle-based flow field, link-lists, nearest neighbor search),
many features are also beneficial for SPH applications. This
includes a domain-based decomposition of the particle field
for an efficient MPI parallelization and an adaptive proces-
sor allocation, i.e. dynamic load balancing. Specifically the
latter feature becomes important when simulations consist of
sparsely populated domain (e.g. in the case of free-surface
flows), in order to optimize the per-processor particle load.

Our SPH code was validated for various applications, such
as free-surface flow in smooth and rough fractures [18], [19],
flow and transport dynamics in porous media [20], [21],
mesoscale modeling of advection-diffusion phenomena [22],
reaction and mixing kinetics in porous media [21], [23], [24]
and modeling of surface tension and contact angles [18], [25]–
[27].

The main objective of this work is to identify important
parameters that affect flow partitioning dynamics of gravity-
driven free-surface flows at horizontal fracture intersection.
The effect of flow mode formation on the travel time distribu-
tion is demonstrated via highly parallelized three-dimensional
SPH simulations and laboratory experiments which serve as a
validation for our new SPH code. The efficiency of horizontal
fracture imbibition is shown to depend on the type of flow
mode that prevails on the vertical fracture surface and flowrate
dependent scaling behavior is observed.

II. METHODS

A. Smoothed Particle Hydrodynamics

Here we give a brief description of our SPH model.
Noting that r = |r− r′| we employ the following kernel in

terms of relative distances q = r/h as [28] which was shown
to have superior stability properties [29]

W (q, h) = αk

{
(1− q)3 0 ≤ q < 1

0 1 ≤ q .
(1)

where αk = 168/(16πh3).
The following discretization of the NS equation conserves

momentum exactly due to the symmetric pressure gradient
[30] and employs a common discretization of the viscous

diffusion terms [31]:
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where êij = rij/rij is the unit vector pointing from particle
i to particle j and fij is a conservative interaction force that
creates surface tension [25]. The force is constructed from two
superposed cubic spline functions of the form [18]

W (q, h) = αk
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where q = 2r/h such that fij

fij = sff (AW1(rij , h1)−BW2(rij , h2))êij . (4)

Here A = (h1/h2)3, B = 1, h1 = h and h2/h1 = 2.
In order to close the equation system Eq. (2) the density ρ

and pressure P of each particle have to be computed during
each time step. The density is evaluated via kernel summation
as

ρi =

N∑
j=1

mjW (rij , h) . (5)

The pressure is obtained from an equation of state (EOS)
following [32], [33]

P (ρ) = B

([
ρ

ρ0

]γ
− 1

)
+ P0 , (6)

where ρ0 is the reference density and P0 is a background
pressure. The scaling constant B is given by

B = c2
ρ0
γ
, (7)

with c being the speed of sound and γ is a coefficient
commonly set to γ = 7 to achieve a rapid pressure increase
for approaching particles and avoid penetration of solid bound-
aries. The speed of sound is problem dependent and is chosen
such that the fluid behaves nearly incompressible, that is,
|δρ|/ρ ≤ 0.03 which was shown to be sufficient to model
accurate pressure fields [31]. Fluid particles that approach a
boundary are subject to a high acceleration due to the attractive
component of the interaction force Eq. (4), such that the effect
of the pressure gradient alone may not be sufficient to avoid
penetration. A common method to address this problem and
prescribe no-slip boundary conditions was developed by [34]
who employed ghost particles that mirror fluid particles normal
to the nominal solid interface with inversed velocity. This
methods was enhanced for example by [31], [35]. However,
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the determination of the nominal solid boundary becomes
challenging for highly irregular surfaces and the computational
costs are high compared to simpler bounce-back conditions,
as demonstrated e.g. by [18], [26], [36]. In this work we
opt for the later solution combined with the proximity ratio
determination of [37]. To approximate the nominal solid-fluid
boundary within the diffuse interface region of an irregular
surface a state-specific number density is employed

nsi,α =
∑

δα,βW (ri,α − rj,β , h) (8)

where the Kronecker delta is defined as

δα,β =

{
1 α = β

0 α 6= β
(9)

and α and β denote the state of a particle (in the sense of a
color function) that can either belong to the fluid or the solid
region. Now a proximity ratio can be defined as

φi =
nsi
ni
, (10)

where ni is the actual number density of a particle. For a
straight interface in between two phases, e.g. solid-fluid or
fluid-fluid, this ratio evaluates to

φi =


0.5 xi

ε ]0.5, 1[ 0 < xi < h

1 xi ≥ h
, (11)

where xi is the distance to the nominal interface, which is
located at a distance equal to half of the inter-particle spacing
∆x = (m/ρ)1/3 normal to the interface. In order to enforce
a no-slip boundary condition we return fluid particles along
the normal of the fluid interface to the flow field once they
penetrate the boundary, i.e. when φi < 0.5. The normals are
calculated using a color function:

ci =

N∑
j=1

mj

ρj
ψjW (rij , h) , (12)

where ψj = 1 for fluid particles and zero for solid particles,
such that the normals can be obtained from the gradient

ni = ∇ci . (13)

Particles that penetrate the boundary are returned along the
fluid normal by a distance ∆d proportional to the proximity
ratio:

∆d = β∆x(1− φi
0.5

) , (14)

where we found β = 2 to give best results for various values
of surface tension and wall geometries. It should be noted that
the bounce-back condition is commonly only activated when
fluid particles initially come into contact with a solid boundary,
i.e. fluid-solid interaction forces create a strong acceleration.

Equation (2) is integrated using a modified Velocity-Verlet
time stepping scheme. Noting that

dri
dt

= vi and ai =
fi
mi

, (15)

where ai is the acceleration, the time stepping scheme is given
as

vi(t+ 1
2∆t) = vi + 1

2ai(t) (16a)
v̄i(t+ ∆t) = vi(t) + ∆tai (16b)
ri(t+ ∆t) = ri(t) + ∆tvi(t+ 1

2∆t) (16c)

Calculation of ai(t+ ∆t) using extrapolated velocity v̄i

vi(t+ ∆t) = vi(t+ 1
2∆t) +

1

2
ai(t+ ∆t) (16d)

Particle mass can be obtained as m = ρ0∆x3, where ∆x is the
inter particle spacing. The kernel length is obtained from h =
n1/3∆x, where n = 40. Solid walls consists of three layers
of particles in order to satisfy the normalization condition for
fluid particle in the vicinity of the solid walls.

B. Laboratory setup

For the percolation experiment we use an 24 channel labo-
ratory dispenser (Ismatec R© IPC High Precision Multichannel
Dispenser ISM934C) and silicon tubes with an inner diameter
of 1.5 mm. The cubes have dimensions of 20× 20× 20 cm
and are made of clear polymethylmethacrylat (PMMA). Static
contact angles θ0 of the surfaces are 65.16◦(±2.91◦) and were
experimentally determined with a contact angle goniometer.
Sessile droplets had an average volume of 1.74 µL (±0.12 µL).

The experimental setup is shown in Fig. 1. Cubes are
stacked on top of each other separated by four metallic
distance spacers with varying thickness df and a diameter
of 5 mm. The base of the experimental setup consists of a
metallic square grill with cell sizes of 5× 5× 5 cm and was
coated with a hydrophobic lacquer (θ0 ≈ 110◦) to maximize
flow velocities across the grill. The drip water is collected
by a digital scale beneath the grill at an accuracy of 0.1 ml.
The additional travel time from the bottom of the cubes into
the drip collector was experimentally determined to lie below
500 ms and does not influence the overall results significantly.
Evaporation rates from the collector pan were determined for
a constant room temperature and are accounted for during
the experiments. We use distilled water for all experiments,
however, fluorescent dye (uranine) was added to increase
visibility in some of the figures.

III. RESULTS

A. General validation experiments

While the model has been validated for various types of
flow dynamics (e.g. [18], [19], [27] here we show a simple
numerical experiment to determine maximum droplet heights.
Sessile droplets assume a spherical cap shape when their radius
r is small compared to the capillary length

λc =

√
γ

ρg
, (17)

i.e. r � λc, whereas larger droplets tend to be flattened by
gravitational effects which limit the maximum height hmax.
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Fig. 1. Sketch of the laboratory setup.

The maximum height can be approximated by [38]:

hmax = 2λcsin

(
θ0
2

)
, (18)

where θ0 is the static contact angle between fluid and solid
surface. Figure 2 shows the maximum droplet height obtained
for two different resolutions of our SPH model and several
droplet radii. At both resolutions we obtain a good conver-
gence to the theoretical solution. Some fluctuation around the
theoretical value can be attributed to the partially not perfectly
flat top surface of the droplets, as we do not determine an
averaged maximum height along the top surface.

B. Low resolution simulations

Our initial laboratory setup consisted of 15 injection points
(here referred to as point-wise or localized injection) equally
distributed along the top of the upper cube where each outlet
has a flow rate of 2.5 mL min−1. The cubes are separated by a
distance of 2.5 mm. During the experiments the accumulated
fluid mass that reached the bottom of the system was measured
using the digital scale. A second inlet condition (diffuse
boundary) was created by placing a thin sponge along the
whole length of the cube in front of the tube outlets. This setup
was intended to mimic a diffuse type of boundary condition,
e.g. by an overlying fine-grained soil layer. Laboratory experi-
ments display a rather high variation in terms of the first arrival
times at the bottom of the system and the time-dependent
partitioning dynamics at the fracture intersection. Therefore
we conducted several experiments for each boundary condition
in order to detect a characteristic behavior. The numeri-
cal simulations were setup with the following parameters:
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Fig. 2. Droplet heights for two resolutions and several droplet radii. Droplet
with a radius much larger than the capillary length are flattened by the effect
of gravity and establish a maximum height, i.e. form fluid puddles.

ρf,0 = 930 kg m−3, ρs,0 = 1000 kg m−3, c0 = 1.5 m s−1,
sff = 3.0× 10−5 kg m s−2, ssf = 8.0× 10−6 kg m s−2 and
consisted of approximately 3 million particles with an inter
particle spacing of ∆x = 5.0× 10−4 m (see Fig. 3). With the
given interaction parameters the surface tension is σ ≈ 0.07
[18] and the static contact angle is θ0 ≈ 65◦. Due to the
long simulation times only a limited set of simulations was
performed and compared to the laboratory experiments for
early times of the experiments t <50 s. Figure 4 shows the
results of the laboratory experiments and the corresponding
SPH simulations. The laboratory experiments indicate a much
faster initial arrival time for the point-wise injection followed
by a filling of the horizontal fracture and finally a steady-
state phase once the fracture is completely filled. The diffuse
boundary in general promotes a faster filling of the horizontal
fracture and on average later initial arrival times, which also
leads to a faster establishment of a steady-state (i.e. inflow
= outflow). While we could not conduct the same amount
of simulations for this experiment the simulations display a
similar behavior for both of the boundary conditions. Simu-
lations and laboratory experiments both favour the formation
of a reduced number of rivulets for the diffuse boundary,
while the point-wise injection promotes the formation of 15
individual droplet trails. This difference in preferential flow
mode is believed to be the major controlling factor of the
partitioning dynamic at the fracture intersection. However,
a qualitative comparison between the laboratory experiments
and SPH simulations revealed a higher number of partial
rivulets (i.e. merged droplets) in the numerical experiments
for the point-wise injection which is believed to be a result of
insufficient resolution, i.e. flow features such as thin rivulets
or droplet breakup singularities are not correctly sustained. In
the next section we carry out a convergence study to determine
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Fig. 3. Example of a point-wise injection simulation at a resolution of ∆x = 5.0 × 10−4 m and about 3 million particles.
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Fig. 4. Comparison of mass accumulation at the system outlet for both bound-
ary conditions and SPH simulations. Point-wise injection boundaries exhibit
a much lower variation in initial arrival times, while the diffuse boundary
promotes a stronger flow into the horizontal fracture and consequently a later
average arrival time. Steady-state is established faster for the diffuse boundary.

an adequate resolution.

C. High resolution simulations: Flow regime transitions

In order to validate the SPH model for a complex flow
setting we conducted a series of laboratory experiments to
determine prevailing flow modes for various flow-rates ranging
from 1.5 mL min−1 to 4.5 mL min−1 at different resolutions
on a smooth vertical surface. For the given fluid-solid com-
bination the whole spectrum of flow modes (droplets, mixed
droplets/rivulet, rivulets) can be observed. Due to environmen-
tal ”noise” such as slight impurities on the PMMA surfaces
and/or tiny air-pressure or flow rate variations [7], [10] it is
nearly impossible to establish a perfect droplet regime, i.e. a

stream of individual droplets moving at the exact same veloc-
ity down the surface. Such interferences commonly induce
mixed flow regimes, e.g. merging droplet, that temporarily
form partial rivulets or larger droplets that travel at high
velocities and emit smaller droplets. While the transition to
full rivulet flow can be rather easily determined (a continuous
stream is established) the intermediate regimes are rather
difficult to compare quantitatively under such conditions.
Figure 5 shows a qualitative comparison of our SPH model
for three different flow rates. Parameters for the SPH model
are ρf,0 = 950 kg m−3, ρs,0 = 1000 kg m−3, c0 = 4 m s−1,
sff = 6.5× 10−6 kg m s−2, ssf = 2.0× 10−6 kg m s−2. The
background pressure P0 is set to zero and γ = 7. The
inter-particle spacing is ∆x = 1.0× 10−4 m and surface
tension σ = 0.07. The final transition from droplet flow
mode to constant rivulet flow mode was found to be at about
3.0 mL min−1 (±0.25 mL min−1) and 2.9 mL min−1 for the
SPH simulations. Three different resolutions (∆x = 0.0001 m,
0.0002 m and 0.0005 m) were tested and convergence was
found approximately at a resolution of ∆x = 1.0× 10−4 m.

D. Single inlet fractionation dynamics at horizontal fracture
intersections

Similar to the coarse resolution simulations we conducted
further numerical and laboratory experiments to investigate
the process of fractionation for a single tube inlet and cubes
separated by distance spacer with a thickness of df = 2.5 mm.
At this spacing the fractionation process at the intersection
between horizontal and vertical ”fracture” is likely to be
controlled by a complex interplay of inertia and capillary
forces, i.e. the prevailing flow mode. Distilled water is injected
at the top of the upper cube as shown in Fig. 1, such that an
immediate capillary connection is established. Flow rates were
varied in the range of 1.5 mL min−1 to 4.5 mL min−1 at an in-
terval of 0.5 mL min−1. Each experiment was run for 1.5 min
and the ratio of injected to total water mass was recorded. We
carried out 10 experiments at each flow rate. While results
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Fig. 5. Flow mode transitions observed in the laboratory and corresponding
SPH simulations. (Left) Droplet mode at 1.5 mL min−1, (middle) transition
zone from droplet to full rivulet flow mode at 2.5 mL min−1 and (right)
constant rivulet mode at 3.0 mL min−1. Note the difference in scale between
simulations and experiments.
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Fig. 6. Ratio of accumulated mass on the scale vs. injected fluid mass.
Partitioning behavior at the fracture intersection can be clearly linked to
the occurrence of flow modes on the vertical surfaces. For rivulet flows
(>3.0 mL min−1) nearly all injected water is stored in the horizontal fracture.

display a certain variation we can identify characteristic trends
in the dataset, similar to the initial experiments conducted
with 15 inlets. Figure 6 shows the ratio of fluid mass that
left the system vs. total injected mass after 90 s. It becomes
apparent that at flow rates of 3.0 mL min−1 or higher nearly no
fluid bypasses the horizontal fracture (until it is fully wetted).
At lower flow rates the likelihood increases, whereas in the
transition zone between (theoretically) full droplet and rivulet
mode experiments exhibit a rather high variance, however,
with an increasing average value for decreasing flow rates.
Similar Fig. 7 shows the mass accumulation at three different
flow rates and the dominating flow modes. While for higher
flow rates (i.e. in the rivulet regime) the first breakthrough
seems to occur slightly earlier (indicating some bypass) for
lower flow rates a much stronger bypass behavior can be
observed during the whole experiment. SPH simulations
were carried out for several subsets of the laboratory setup
in terms of vertical length of the cubes (5 cm, 10 cm and
20 cm) at a resolution of ∆x = 1.0× 10−4 m which was
was shown to be low enough to reproduce important flow
features and the transition to full rivulet flow modes. All
other parameters are the same as given in III-C. The flow rate
was set to 2.0 mL min−1 as this should results in (1) fluid
bypassing the fracture as well as (2) fluid moving past the
fracture intersection. During the laboratory experiments the
first breakthrough for a flow rate of 2.0 mL min−1 occurred
on average after 8.0 s. The simulations for a vertical domain
length of 5 cm and 10 cm do not result in any fluid bypassing
the horizontal fracture during the simulated time span (see see
Figure 8. However, the simulations using 20 cm cubes display
the formation of large droplets (initial merging of smaller
droplets) which in turn emit smaller droplets that are stuck
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3.0 mL min−1 and 4.5 mL min−1) and dominant flow regimes. Data shows
an average of 10 experiments for each flow rate.

to the surface. These sessile droplets consequently contribute
to the formation of further large droplets which are believed
to be able to (partially) bypass the fracture intersection at later
times when Bond and Capillary numbers exceed a critical
value. At this point our simulations run on 256 cores (about
5 s simulation time for cubes of 20 cm length) but could not
be carried out long enough to capture the bypass behavior.
Figure 8 (right) shows the formation of an early-time merged
droplet that was about to bypass the fracture but ultimately
gets dragged back by capillary action.

IV. CONCLUSION

We employed a parallelized three-dimensional SPH model
to study free-surface flow dynamics of complex flows along
a simple fracture network intersection. While the studied
system at first sight appears to be simple and predictable
our laboratory experiments and numerical simulations so far
could only narrow down the potential controlling parameters.
Further numerical (and laboratory) experiments are necessary
to study the partitioning dynamics at the fracture intersection
in more detail to obtain a generalized theory. Specifically the
vertical domain length seems to heavily influence the dynamics
of droplet merging and consequently the increase of both
high Bond and Capillary number flow features that are able
to bypass the capillary drag of the horizontal fracture. The
wetting state of the horizontal fracture is suspected to influence
the bypass behavior as well due to the potential decrease in
capillary drag with increasing water content.
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